Optimal Shape Design for the p-Laplacian Eigenvalue Problem

In this paper, a shape optimization problem corresponding to the p-Laplacian operator is studied. Given a density function in a rearrangement class generated by a step function, find the density such that the principal eigenvalue is as small as possible. Considering a membrane of known fixed mass and with fixed boundary of prescribed shape consisting of two different materials, our results determine the way to distribute these materials such that the basic frequency of the membrane is minimal. We obtain some qualitative aspects of the optimizer and then we determine nearly optimal sets which are approximations of the minimizer for specific ranges of parameters values. A numerical algorithm is proposed to derive the optimal shape and it is proved that the numerical procedure converges to a local minimizer. Numerical illustrations are provided for different domains to show the efficiency and practical suitability of our approach.

[1]  Marcello Lucia,et al.  Simplicity of the principal eigenvalue for indefinite quasilinear problems , 2007, Advances in Differential Equations.

[2]  Fariba Bahrami,et al.  A nonlinear eigenvalue problem arising in a nanostructured quantum dot , 2014, Commun. Nonlinear Sci. Numer. Simul..

[3]  G. R. Burton,et al.  Variational problems on classes of rearrangements and multiple configurations for steady vortices , 1989 .

[4]  P. Tolksdorf,et al.  Regularity for a more general class of quasilinear elliptic equations , 1984 .

[5]  Seyyed Abbas Mohammadi,et al.  A minimization problem for an elliptic eigenvalue problem with nonlinear dependence on the eigenparameter , 2016 .

[6]  J.-L. Lions,et al.  Simplicit'e et isolation de la premi`ere valeur propre du p-Laplacien avec poids , 1987 .

[7]  Chiu-Yen Kao,et al.  Minimization of inhomogeneous biharmonic eigenvalue problems , 2017 .

[8]  Leandro M. Del Pezzo,et al.  An optimization problem for the first weighted eigenvalue problem plus a potential , 2009, 0906.2985.

[9]  Fabrizio Cuccu,et al.  minimization of the first eigenvalue in problems involving the bi-laplacian , 2008 .

[10]  Farid Bozorgnia,et al.  Convergence of Inverse Power Method for First Eigenvalue of p-Laplace Operator , 2016 .

[11]  Steven J. Cox,et al.  Extremal eigenvalue problems for composite membranes, II , 1990 .

[12]  Fariba Bahrami,et al.  Shape dependent energy optimization in quantum dots , 2012, Appl. Math. Lett..

[13]  Weitao Chen,et al.  Minimizing Eigenvalues for Inhomogeneous Rods and Plates , 2016, J. Sci. Comput..

[14]  D. Grieser,et al.  Symmetry Breaking and Other Phenomena in the Optimization of Eigenvalues for Composite Membranes , 1999, math/9912116.

[15]  Pedro R. S. Antunes,et al.  A nonlinear eigenvalue optimization problem: Optimal potential functions , 2018 .

[16]  Seyyed Abbas Mohammadi,et al.  Extremal principal eigenvalue of the bi-Laplacian operator , 2016 .

[17]  Seyyed Abbas Mohammadi,et al.  Extremal energies of Laplacian operator: Different configurations for steady vortices , 2016, 1601.01254.

[18]  Jean-Pierre Gossez,et al.  Minimization of eigenvalues for a quasilinear elliptic Neumann problem with indefinite weight , 2010 .

[19]  An Lê,et al.  Eigenvalue problems for the p-Laplacian , 2006 .

[20]  Fabrizio Cuccu,et al.  Steiner symmetry in the minimization of the first eigenvalue in problems involving the p-Laplacian , 2016 .

[21]  Peter Lindqvist,et al.  A NONLINEAR EIGENVALUE PROBLEM , 2004 .

[22]  Chiu-Yen Kao,et al.  Efficient Rearrangement Algorithms for Shape Optimization on Elliptic Eigenvalue Problems , 2013, J. Sci. Comput..

[23]  D. Gilbarg,et al.  Elliptic Partial Differential Equa-tions of Second Order , 1977 .

[24]  Petri Juutinen,et al.  The ∞-Eigenvalue Problem , 1999 .

[25]  Juan Luis Vázquez,et al.  A Strong Maximum Principle for some quasilinear elliptic equations , 1984 .

[26]  D. Grieser,et al.  The Free Boundary Problem in the Optimization of Composite Membranes , 2004 .

[27]  Wacław Pielichowski The optimization of eigenvalue problems involving the -Laplacian. , 2004 .

[28]  Yifeng Yu,et al.  Some properties of the ground states of the infinity laplacian , 2007 .