An adaptive isogeometric boundary element method for predicting the effective thermal conductivity of steady state heterogeneity

[1]  C. Y. Dong,et al.  An isogeometric boundary element method using adaptive integral method for 3D potential problems , 2017, J. Comput. Appl. Math..

[2]  P. Kerfriden,et al.  Shape optimization directly from CAD: An isogeometric boundary element approach using T-splines , 2017 .

[3]  P. Kerfriden,et al.  Isogeometric boundary element methods for three dimensional static fracture and fatigue crack growth , 2017 .

[4]  C. Y. Dong,et al.  An isogeometric boundary element method for three dimensional potential problems , 2017, J. Comput. Appl. Math..

[5]  Stéphane Bordas,et al.  Linear elastic fracture simulation directly from CAD: 2D NURBS-based implementation and role of tip enrichment , 2017, International Journal of Fracture.

[6]  Stéphane Bordas,et al.  Implementation of regularized isogeometric boundary element methods for gradient‐based shape optimization in two‐dimensional linear elasticity , 2016 .

[7]  C. Dong An interface integral formulation of heat energy calculation of steady state heat conduction in heterogeneous media , 2015 .

[8]  C. Dong,et al.  Boundary integral equation formulations for steady state thermal conduction and their applications in heterogeneities , 2015 .

[9]  G. Rodin,et al.  On reflected interactions in elastic solids containing inhomogeneities , 2014 .

[10]  M. Scott,et al.  Acoustic isogeometric boundary element analysis , 2014 .

[11]  Christophe Geuzaine,et al.  Numerical simulation of CAD thin structures using the eXtended Finite Element Method and Level Sets , 2013 .

[12]  Alessandro Reali,et al.  Isogeometric Collocation: Cost Comparison with Galerkin Methods and Extension to Adaptive Hierarchical NURBS Discretizations , 2013 .

[13]  B. Mourrain,et al.  Constructing analysis-suitable parameterization of computational domain from CAD boundary by variational harmonic method , 2013, J. Comput. Phys..

[14]  G. Legrain A NURBS enhanced extended finite element approach for unfitted CAD analysis , 2013, Computational Mechanics.

[15]  Stéphane Bordas,et al.  Stress analysis without meshing: isogeometric boundary-element method , 2013 .

[16]  J. Trevelyan,et al.  An isogeometric boundary element method for elastostatic analysis: 2D implementation aspects , 2013, 1302.5305.

[17]  John A. Evans,et al.  Isogeometric boundary element analysis using unstructured T-splines , 2013 .

[18]  Régis Duvigneau,et al.  Analysis-suitable volume parameterization of multi-block computational domain in isogeometric applications , 2013, Comput. Aided Des..

[19]  Brett A. Bednarcyk,et al.  Micromechanics of Composite Materials: A Generalized Multiscale Analysis Approach , 2012 .

[20]  Guangyao Li,et al.  Steady-state heat conduction analysis of solids with small open-ended tubular holes by BFM , 2012 .

[21]  H. Lian,et al.  Recent Developments in CAD/analysis Integration , 2012, 1210.8216.

[22]  Grégory Legrain,et al.  High order X-FEM and levelsets for complex microstructures: Uncoupling geometry and approximation , 2012 .

[23]  Vinh Phu Nguyen,et al.  Isogeometric analysis: An overview and computer implementation aspects , 2012, Math. Comput. Simul..

[24]  T. Rabczuk,et al.  A two-dimensional Isogeometric Boundary Element Method for elastostatic analysis , 2012 .

[25]  B. Schrefler,et al.  Generalized self‐consistent like method for mechanical degradation of fibrous composites , 2011 .

[26]  A. Huerta,et al.  NURBS-Enhanced Finite Element Method (NEFEM) , 2011 .

[27]  H. Nguyen-Xuan,et al.  Isogeometric analysis using polynomial splines over hierarchical T-meshes for two-dimensional elastic solids , 2011 .

[28]  Stéphane Bordas,et al.  Finite element analysis on implicitly defined domains: An accurate representation based on arbitrary parametric surfaces , 2011 .

[29]  Xiao-Wei Gao,et al.  An effective method for numerical evaluation of general 2D and 3D high order singular boundary integrals , 2010 .

[30]  D. Boso,et al.  Generalised self consistent homogenisation as an inverse problem , 2010 .

[31]  Stéphane Bordas,et al.  Recent advances towards reducing the meshing and re-meshing burden in computational sciences , 2010 .

[32]  Bert Jüttler,et al.  Parameterization of Contractible Domains Using Sequences of Harmonic Maps , 2010, Curves and Surfaces.

[33]  Régis Duvigneau,et al.  Optimal analysis-aware parameterization of computational domain in 3D isogeometric analysis , 2010, Comput. Aided Des..

[34]  B. Schrefler,et al.  Generalized self‐consistent homogenization using the Finite Element Method , 2009 .

[35]  Gernot Beer,et al.  The Boundary Element Method with Programming: For Engineers and Scientists , 2008 .

[36]  Yao Chen,et al.  Modified Eshelby tensor modeling for elastic property prediction of carbon nanotube reinforced ceramic nanocomposites , 2007 .

[37]  Ruey-Bin Yang,et al.  A generalized self-consistent method for calculation of effective thermal conductivity of composites with interfacial contact conductance☆ , 2006 .

[38]  T. Hughes,et al.  Isogeometric analysis : CAD, finite elements, NURBS, exact geometry and mesh refinement , 2005 .

[39]  C. Rajakumar,et al.  The Boundary Element Method: Applications in Sound and Vibration , 2004 .

[40]  E. Aydin,et al.  Multi-region heat conduction problems by boundary element method , 2004 .

[41]  S. Lo,et al.  Application of the boundary-domain integral equation in elastic inclusion problems , 2002 .

[42]  Tg Davies,et al.  Boundary Element Programming in Mechanics , 2002 .

[43]  Peter Schröder,et al.  Integrated modeling, finite-element analysis, and engineering design for thin-shell structures using subdivision , 2002, Comput. Aided Des..

[44]  M. Ortiz,et al.  Subdivision surfaces: a new paradigm for thin‐shell finite‐element analysis , 2000 .

[45]  Tg Davies,et al.  Adaptive integration in elasto‐plastic boundary element analysis , 2000 .

[46]  M. Taya,et al.  Thermal Conductivity of Hybrid Short Fiber Composites , 1993 .

[47]  Minoru Taya,et al.  Effective thermal conductivity of a misoriented short fiber composite , 1985 .

[48]  A. Norris A differential scheme for the effective moduli of composites , 1985 .

[49]  Z. Hashin Analysis of Composite Materials—A Survey , 1983 .

[50]  R. Christensen,et al.  Solutions for effective shear properties in three phase sphere and cylinder models , 1979 .

[51]  B. Budiansky On the elastic moduli of some heterogeneous materials , 1965 .

[52]  R. Hill A self-consistent mechanics of composite materials , 1965 .

[53]  Zvi Hashin,et al.  The Elastic Moduli of Heterogeneous Materials , 1962 .

[54]  Bert Jüttler,et al.  Bounding the influence of domain parameterization and knot spacing on numerical stability in Isogeometric Analysis , 2014 .

[55]  Tg Davies,et al.  Effective evaluation of non-singular integrals in 3D BEM , 1995 .

[56]  A. Grebénnikov Isogeometric approximation of functions of one variable , 1982 .