Conditional $(t,k)$ -Diagnosis in Regular and Irregular Graphs Under the Comparison Diagnosis Model

Assume that there are at most <inline-formula><tex-math notation="LaTeX">$t$</tex-math><alternatives> <inline-graphic xlink:href="hsieh-ieq2-2585489.gif"/></alternatives></inline-formula> faulty vertices. A system is <italic>conditionally (<inline-formula><tex-math notation="LaTeX">$t,k$</tex-math><alternatives> <inline-graphic xlink:href="hsieh-ieq3-2585489.gif"/></alternatives></inline-formula>)-</italic>diagnosable<italic/> if at least <inline-formula><tex-math notation="LaTeX">$k$</tex-math><alternatives> <inline-graphic xlink:href="hsieh-ieq4-2585489.gif"/></alternatives></inline-formula> faulty vertices (or all faulty vertices if fewer than <inline-formula><tex-math notation="LaTeX">$k$</tex-math><alternatives> <inline-graphic xlink:href="hsieh-ieq5-2585489.gif"/></alternatives></inline-formula> faulty vertices remain) can be identified in each iteration under the assumption that every vertex is adjacent to at least one fault-free vertex. Let <inline-formula><tex-math notation="LaTeX">$\kappa _c(G)$</tex-math><alternatives> <inline-graphic xlink:href="hsieh-ieq6-2585489.gif"/></alternatives></inline-formula> be the <italic>conditional vertex connectivity</italic> of <inline-formula><tex-math notation="LaTeX">$G$</tex-math><alternatives> <inline-graphic xlink:href="hsieh-ieq7-2585489.gif"/></alternatives></inline-formula>, which measures the vertex connectivity of <inline-formula><tex-math notation="LaTeX">$G$</tex-math><alternatives> <inline-graphic xlink:href="hsieh-ieq8-2585489.gif"/></alternatives></inline-formula> according to the assumption that every vertex is adjacent to at least one fault-free vertex. Let <inline-formula><tex-math notation="LaTeX">$\Delta (G)$</tex-math><alternatives><inline-graphic xlink:href="hsieh-ieq9-2585489.gif"/></alternatives></inline-formula> be the maximum degrees of the given graph <inline-formula><tex-math notation="LaTeX">$G$</tex-math><alternatives> <inline-graphic xlink:href="hsieh-ieq10-2585489.gif"/></alternatives></inline-formula>. When a graph <inline-formula> <tex-math notation="LaTeX">$G$</tex-math><alternatives><inline-graphic xlink:href="hsieh-ieq11-2585489.gif"/> </alternatives></inline-formula> satisfies the condition that for any pair of vertices with distance two has at least two common neighbors in <inline-formula><tex-math notation="LaTeX">$G$</tex-math><alternatives> <inline-graphic xlink:href="hsieh-ieq12-2585489.gif"/></alternatives></inline-formula>, we show the following two results: 1) An <inline-formula><tex-math notation="LaTeX">$r$</tex-math><alternatives> <inline-graphic xlink:href="hsieh-ieq13-2585489.gif"/></alternatives></inline-formula>-regular network <inline-formula> <tex-math notation="LaTeX">$G$</tex-math><alternatives><inline-graphic xlink:href="hsieh-ieq14-2585489.gif"/> </alternatives></inline-formula> containing <inline-formula><tex-math notation="LaTeX">$N$</tex-math><alternatives> <inline-graphic xlink:href="hsieh-ieq15-2585489.gif"/></alternatives></inline-formula> vertices is conditionally <inline-formula><tex-math notation="LaTeX">$\left(\frac{N+\sqrt{\frac{4\kappa (G)N}{(r+1)(r-1)}}-2}{r+1},\kappa _c(G)\right)$</tex-math><alternatives><inline-graphic xlink:href="hsieh-ieq16-2585489.gif"/></alternatives> </inline-formula>-diagnosable, where <inline-formula><tex-math notation="LaTeX">$r \geq 3$</tex-math><alternatives> <inline-graphic xlink:href="hsieh-ieq17-2585489.gif"/></alternatives></inline-formula> and <inline-formula> <tex-math notation="LaTeX">$N \geq \frac{(r+1)(25r-9)}{4\kappa (G)}$</tex-math><alternatives> <inline-graphic xlink:href="hsieh-ieq18-2585489.gif"/></alternatives></inline-formula>. 2) An irregular network <inline-formula><tex-math notation="LaTeX">$G$</tex-math><alternatives> <inline-graphic xlink:href="hsieh-ieq19-2585489.gif"/></alternatives></inline-formula> containing <inline-formula> <tex-math notation="LaTeX">$N$</tex-math><alternatives><inline-graphic xlink:href="hsieh-ieq20-2585489.gif"/> </alternatives></inline-formula> vertices is conditionally <inline-formula><tex-math notation="LaTeX">$(\frac{N}{\Delta (G)+1}-1,\kappa _c(G))$</tex-math><alternatives><inline-graphic xlink:href="hsieh-ieq21-2585489.gif"/></alternatives> </inline-formula>-diagnosable. By applying the above results to multiprocessor systems, we can measure conditional <inline-formula><tex-math notation="LaTeX">$(t,k)$</tex-math><alternatives> <inline-graphic xlink:href="hsieh-ieq22-2585489.gif"/></alternatives></inline-formula>-diagnosabilities for augmented cubes, folded hypercubes, balanced hypercubes, and exchanged hypercubes.

[1]  Pao-Lien Lai,et al.  A Systematic Algorithm for Identifying Faults on Hypercube-Like Networks Under the Comparison Model , 2012, IEEE Transactions on Reliability.

[2]  Jun-Ming Xu,et al.  Generalized measures of fault tolerance in exchanged hypercubes , 2012, Inf. Process. Lett..

[3]  Jun-Ming Xu,et al.  The super connectivity of augmented cubes , 2008, Inf. Process. Lett..

[4]  Jianxi Fan,et al.  Diagnosability of Crossed Cubes under the Comparison Diagnosis Model , 2002, IEEE Trans. Parallel Distributed Syst..

[5]  Xiaola Lin,et al.  The t/k-diagnosability of the BC graphs , 2005, IEEE Transactions on Computers.

[6]  Yukio Shibata,et al.  Diagnosability of Butterfly Networks under the Comparison Approach , 2002, IEICE Trans. Fundam. Electron. Commun. Comput. Sci..

[7]  Ming-Chien Yang,et al.  Super connectivity of balanced hypercubes , 2012, Appl. Math. Comput..

[8]  Meijie Ma,et al.  The super connectivity of exchanged hypercubes , 2011, Inf. Process. Lett..

[9]  Stefano Chessa,et al.  Crash faults identification in wireless sensor networks , 2002, Comput. Commun..

[10]  Yukio Shibata,et al.  (t, k)-Diagnosable System: A Generalization of the PMC Models , 2003, IEEE Trans. Computers.

[11]  Sun-Yuan Hsieh,et al.  Conditional (t, k)-Diagnosis in Graphs by Using the Comparison Diagnosis Model , 2015, IEEE Trans. Computers.

[12]  Yi Pan,et al.  The exchanged hypercube , 2005, IEEE Transactions on Parallel and Distributed Systems.

[13]  Jie Wu,et al.  The Balanced Hypercube: A Cube-Based System for Fault-Tolerant Applications , 1997, IEEE Trans. Computers.

[14]  Tian He,et al.  Secure localization with phantom node detection , 2008, Ad Hoc Networks.

[15]  Gerard J. Chang,et al.  Diagnosabilities of regular networks , 2005, IEEE Transactions on Parallel and Distributed Systems.

[16]  Gerard J. Chang,et al.  (t, k) - Diagnosis for Matching Composition Networks under the MM* Model , 2007, IEEE Transactions on Computers.

[17]  Gerard J. Chang,et al.  (t; k)-Diagnosis for matching composition networks , 2006, IEEE Transactions on Computers.

[18]  Sun-Yuan Hsieh,et al.  A Scalable Comparison-Based Diagnosis Algorithm for Hypercube-Like Networks , 2013, IEEE Transactions on Reliability.

[19]  Jun-Ming Xu,et al.  On reliability of the folded hypercubes , 2007, Inf. Sci..

[20]  Yu-Chee Tseng,et al.  The Beacon Movement Detection Problem in Wireless Sensor Networks for Localization Applications , 2009, IEEE Transactions on Mobile Computing.

[21]  Cheng-Kuan Lin,et al.  Local Diagnosis Algorithms for Multiprocessor Systems Under the Comparison Diagnosis Model , 2013, IEEE Transactions on Reliability.

[22]  Miroslaw Malek,et al.  A comparison connection assignment for diagnosis of multiprocessor systems , 1980, ISCA '80.

[23]  Abdol-Hossein Esfahanian,et al.  Generalized Measures of Fault Tolerance with Application to N-Cube Networks , 1989, IEEE Trans. Computers.

[24]  Shahram Latifi,et al.  Properties and Performance of Folded Hypercubes , 1991, IEEE Trans. Parallel Distributed Syst..

[25]  GERNOT METZE,et al.  On the Connection Assignment Problem of Diagnosable Systems , 1967, IEEE Trans. Electron. Comput..

[26]  M. Merabti,et al.  A Cellular Approach to Fault Detection and Recovery in Wireless Sensor Networks , 2009, 2009 Third International Conference on Sensor Technologies and Applications.

[27]  GUEY-YUN CHANG,et al.  (t, k)-Diagnosability of Multiprocessor Systems with Applications to Grids and Tori , 2007, SIAM J. Comput..

[28]  Guey-Yun Chang Conditional ({t}, k)-Diagnosis under the PMC Model , 2011, IEEE Transactions on Parallel and Distributed Systems.