The use of simulation in semiconductor technology development

Abstract An overview is presented on the types of problems encountered in semiconductor technology development that are actively studied today via simulation methods. Most of the simulation examples presented here are ones that have been explicitly used in actual industrial semiconductor device design cycles to aid in the optimization of device structures. The examples described here include process simulations, such as the diffusion of dopant atoms, oxidation, etching, deposition, and epitaxial growth, as well as device simulations, which predict the flow of charge carriers and field distribution within a semiconductor device, given its material structure and operating conditions. The main aim here is to illustrate, by example, some of the capabilities of state-of-the-art simulators used in characterizing and predicting semiconductor process and device-related phenomena. We will attempt to outline the degree of sophistication of the physics incorporated in such simulation programs, and provide some contrast to the fundamental physics required for a complete physical description. As will be indicated, simulation development necessarily involves molding the appropriate physical models and numerical algorithms into a package that can be handled in a reasonable length of time by modern computing systems. We briefly outline some of the advances that have been made, and some concerns that remain, in such simulation development.

[1]  Abraham,et al.  Molecular-dynamics study of self-interstitials in silicon. , 1987, Physical review. B, Condensed matter.

[2]  P. Ciampolini,et al.  Numerical simulation of polycrystalline-Silicon MOSFET's , 1986, IEEE Transactions on Electron Devices.

[3]  P. J. Price The theory of hot electrons , 1970 .

[4]  Nguyen Huy Xuong,et al.  Mathematical 2-dimensional model of semiconductor devices , 1971 .

[5]  P. Hohenberg,et al.  Inhomogeneous Electron Gas , 1964 .

[6]  A. S. Grove,et al.  Redistribution of Acceptor and Donor Impurities during Thermal Oxidation of Silicon , 1964 .

[7]  Roberto Guerrieri,et al.  A new discretization strategy of the semiconductor equations comprising momentum and energy balance , 1988, IEEE Trans. Comput. Aided Des. Integr. Circuits Syst..

[8]  Chiakang Sung,et al.  A general simulator for VLSI lithography and etching processes: Part II—Application to deposition and etching , 1980, IEEE Transactions on Electron Devices.

[9]  M. S. Mock,et al.  Analysis of mathematical models of semiconductors devices , 1983 .

[10]  A. Akiyama,et al.  Computer Simulation of Impurity Diffusion in Semiconductors by the Monte Carlo Method , 1987, IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems.

[11]  Paul Jespers,et al.  Process and Device Modeling for Integrated Circuit Design , 1977 .

[12]  S.A. Schwarz,et al.  Semi-empirical equations for electron velocity in silicon: Part I—Bulk , 1983, IEEE Transactions on Electron Devices.

[13]  W. L. Engl,et al.  The influence of the thermal equilibrium approximation on the accuracy of classical two-dimensional numerical modeling of silicon submicrometer MOS transistors , 1988 .

[14]  E. M. Buturla,et al.  Simulation of semiconductor transport using coupled and decoupled solution techniques , 1980 .

[15]  Richard B. Fair,et al.  Effect of complex formation on diffusion of arsenic in silicon , 1973 .

[16]  Rossi,et al.  Quantum theory of transient transport in semiconductors: A Monte Carlo approach. , 1989, Physical review. B, Condensed matter.

[17]  Mamoru Kurata,et al.  Numerical analysis for semiconductor devices , 1982 .

[18]  Siegfried Selberherr,et al.  MINIMOS—A two-dimensional MOS transistor analyzer , 1980 .

[19]  Jeffrey Frey,et al.  AN EFFICIENT TECHNIQUE FOR TWO‐DIMENSIONAL SIMULATION OF VELOCITY OVERSHOOT EFFECTS IN Si AND GaAs DEVICES , 1982 .

[20]  W. Kohn,et al.  Self-Consistent Equations Including Exchange and Correlation Effects , 1965 .

[21]  J. Lorenz,et al.  COMPOSITE—A complete modeling program of silicon technology , 1985, IEEE Transactions on Electron Devices.

[22]  Yaneer Bar-Yam,et al.  Silicon self-interstitial migration: Multiple paths and charge states , 1984 .

[23]  G. Jacucci,et al.  Vacancy Double Jumps and Atomic Diffusion in Aluminum and Sodium , 1977 .

[24]  Roger Clinton Evans,et al.  Shaping geometric objects by cumulative translational sweeps , 1987 .

[25]  Mark T. Robinson,et al.  Computer simulation of atomic-displacement cascades in solids in the binary-collision approximation , 1974 .

[26]  H. W. Loeb,et al.  Application of 2-dimensional solutions of the Shockley-Poisson equation to inversion-layer m.o.s.t. devices , 1968 .

[27]  Carey E. Floyd,et al.  Two-dimensional impurity profiling with emission computed tomography techniques , 1989, IEEE Trans. Comput. Aided Des. Integr. Circuits Syst..

[28]  Robert W. Dutton,et al.  Plastic flow during thermal oxidation of silicon , 1989 .

[29]  J.P. Kreskovsky A hybrid central difference scheme for solid-state device simulation , 1987, IEEE Transactions on Electron Devices.

[30]  C. Wilson Hydrodynamic carrier transport in semiconductors with multiple band minima , 1988 .

[31]  R. F. Lever,et al.  Enhanced ‘‘tail’’ diffusion of phosphorus and boron in silicon: Self‐interstitial phenomena , 1986 .

[32]  T. Nishida,et al.  A physically based mobility model for MOSFET numerical simulation , 1987, IEEE Transactions on Electron Devices.

[33]  V. L. Rideout,et al.  Very small MOSFET's for low-temperature operation , 1977, IEEE Transactions on Electron Devices.

[34]  Charles H. Bennett,et al.  Molecular dynamics calculation of the isotope effect for vacancy diffusion , 1975 .

[35]  A. Neureuther,et al.  A general simulator for VLSI lithography and etching processes: Part I—Application to projection lithography , 1979, IEEE Transactions on Electron Devices.

[36]  S. M. Hu,et al.  Interactions in Sequential Diffusion Processes in Semiconductors , 1968 .

[37]  Fumio Horiguchi,et al.  Effects of a new trench-isolated transistor using sidewall gates , 1989 .

[38]  S. Selberherr,et al.  MINIMOS 3: A MOSFET simulator that includes energy balance , 1987, IEEE Transactions on Electron Devices.

[39]  C. Jacoboni,et al.  The Monte Carlo method for the solution of charge transport in semiconductors with applications to covalent materials , 1983 .

[40]  Pandey Diffusion without vacancies or interstitials: A new concerted exchange mechanism. , 1986, Physical review letters.

[41]  W. V. Roosbroeck Theory of the flow of electrons and holes in germanium and other semiconductors , 1950 .

[42]  S. Laux,et al.  Monte Carlo analysis of electron transport in small semiconductor devices including band-structure and space-charge effects. , 1988, Physical review. B, Condensed matter.

[43]  P. Griffin,et al.  Point defects and dopant diffusion in silicon , 1989 .

[44]  Robert G. Byrnes,et al.  Semiconductor device simulation using generalized mobility models , 1985 .

[45]  J. H. Weiner,et al.  Rate theory for solids. IV. Classical Brownian-motion model , 1974 .

[46]  David K. Brice,et al.  Ion Implantation Range and Energy Deposition Distributions , 1975 .

[47]  D. Hamann,et al.  Norm-Conserving Pseudopotentials , 1979 .

[48]  S. Laux,et al.  Monte-Carlo simulation of submicrometer Si n-MOSFETs at 77 and 300 K , 1988, IEEE Electron Device Letters.

[49]  R. R. O'Brien,et al.  A field-funneling effect on the collection of alpha-particle-generated carriers in silicon devices , 1981, IEEE Electron Device Letters.

[50]  T. May,et al.  Alpha-particle-induced soft errors in dynamic memories , 1979, IEEE Transactions on Electron Devices.

[51]  Siegfried Selberherr,et al.  Three-dimensional process and device modeling , 1989 .

[52]  S. Selberherr Analysis and simulation of semiconductor devices , 1984 .

[53]  Donald J. Rose,et al.  Numerical methods for the hydrodynamic device model: subsonic flow , 1989, IEEE Trans. Comput. Aided Des. Integr. Circuits Syst..

[54]  H. Gummel,et al.  Large-signal analysis of a silicon Read diode oscillator , 1969 .

[55]  N. Shigyo,et al.  Three-dimensional simulation of inverse narrow-channel effect , 1982 .

[56]  D. P. Kennedy,et al.  Calculations of impurity atom diffusion through a narrow diffusion mask opening , 1966 .

[57]  S. M. Hu,et al.  Thermal oxidation of silicon: Chemisorption and linear rate constant , 1984 .

[58]  S. E. Laux Techniques for small-signal analysis of semiconductor devices , 1985 .

[59]  R. H. Dennard,et al.  Alpha-particle-induced soft error rate in VLSI circuits , 1982 .

[60]  Y.-K. Feng,et al.  Simulation of submicrometer GaAs MESFET's using a full dynamic transport model , 1988 .

[61]  D. P. Kennedy,et al.  Steady state mathematical theory for the insulated gate field effect transistor , 1973 .

[62]  F. Reif,et al.  Fundamentals of Statistical and Thermal Physics , 1965 .

[63]  Farid F. Abraham,et al.  Computer simulations of surfaces, interfaces, and physisorbed films , 1984 .

[64]  E. Tannenbaum,et al.  Impurity redistribution and junction formation in silicon by thermal oxidation , 1960 .

[65]  K. Taniguchi,et al.  IMPACT—A point-defect-based two-dimensional process simulator: Modeling the lateral oxidation-enhanced diffusion of dopants in silicon , 1986, IEEE Transactions on Electron Devices.

[66]  Peter J. Price,et al.  Calculation of hot electron phenomena , 1978 .

[67]  J. Slotboom Iterative scheme for 1- and 2- dimensional d.c.-transistor simulation , 1969 .

[68]  M.J. Hargrove,et al.  Numerical solution of the semiconductor transport equations with current boundary conditions , 1983, IEEE Transactions on Electron Devices.

[69]  K. Blotekjaer Transport equations for electrons in two-valley semiconductors , 1970 .

[70]  R.W. Dutton,et al.  Process design using two-dimensional process and device simulators , 1982, IEEE Transactions on Electron Devices.

[71]  A. Rothwarf A new quantum mechanical channel mobility model for Si MOSFET's , 1987, IEEE Electron Device Letters.

[72]  L. Borucki,et al.  FEDSS: a 2D semiconductor fabrication process simulator , 1985 .

[73]  S. Horiguchi,et al.  A three-dimensional analysis of semiconductor devices , 1982, IEEE Transactions on Electron Devices.

[74]  F. Stern,et al.  Electronic properties of two-dimensional systems , 1982 .

[75]  T. S. Low,et al.  Dramatic reduction of sidegating in MODFETs , 1988 .

[76]  Richard B. Fair,et al.  Diffusion of ion-implanted B in high concentration P- and As-doped silicon , 1975 .

[77]  R. Fair,et al.  A Quantitative Model for the Diffusion of Phosphorus in Silicon and the Emitter Dip Effect , 1977 .

[78]  E. M. Azoff Generalized energy-momentum conservation equations in the relaxation time approximation , 1987 .

[79]  B. Penumalli,et al.  A comprehensive two-dimensional VLSI process simulation program, BICEPS , 1983, IEEE Transactions on Electron Devices.

[80]  Wha Wil Schilders,et al.  Semiconductor device modelling from the numerical point of view , 1987 .

[81]  Steven E. Laux,et al.  Electron states in narrow gate-induced channels in Si , 1986 .

[82]  L. Reggiani Recent results on hot-electron quantum transport☆ , 1985 .

[83]  Dipen N. Sinha,et al.  Transient Measurements of Ultrafast Charge Collection in Semicouductor Diodes , 1987, IEEE Transactions on Nuclear Science.

[84]  Onno W. Purbo,et al.  Numerical model for degenerate and heterostructure semiconductor devices , 1989 .

[85]  Robert W. Dutton,et al.  Verification of analytic point defect models using SUPREM-IV [dopant diffusion] , 1988, IEEE Trans. Comput. Aided Des. Integr. Circuits Syst..

[86]  Massimo Vanzi,et al.  A physically based mobility model for numerical simulation of nonplanar devices , 1988, IEEE Trans. Comput. Aided Des. Integr. Circuits Syst..

[87]  William Joseph Fitzgerald,et al.  Solid modeling for production design , 1987 .

[88]  J. Biersack,et al.  A Monte Carlo computer program for the transport of energetic ions in amorphous targets , 1980 .

[89]  Charles H. Bennett,et al.  Efficient estimation of free energy differences from Monte Carlo data , 1976 .

[90]  S. Russek,et al.  Semi-empirical equations for electron velocity in silicon: Part II—MOS inversion layer , 1983, IEEE Transactions on Electron Devices.

[91]  Christian A. Ringhofer,et al.  Implications of Analytical Investigations About the Semiconductor Equations on Device Modeling Programs , 1984, IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems.

[92]  Michael A. Wesley,et al.  OYSTER: A Study of Integrated Circuits as Three Dimensional Structures , 1983, IBM J. Res. Dev..

[93]  G. C. Messenger,et al.  Collection of Charge on Junction Nodes from Ion Tracks , 1982, IEEE Transactions on Nuclear Science.

[94]  M. Lin,et al.  A better understanding of the channel mobility of Si MOSFETs based on the physics of quantized subbands , 1988 .

[95]  R. Stratton,et al.  Diffusion of Hot and Cold Electrons in Semiconductor Barriers , 1962 .

[96]  R. Dutton,et al.  Models for computer simulation of complete IC fabrication process , 1979 .

[97]  R. Dutton,et al.  Coupled Monte Carlo-drift diffusion analysis of hot-electron effects in MOSFETs , 1989 .

[98]  R.W. Dutton,et al.  VLSI Process modeling—SUPREM III , 1983, IEEE Transactions on Electron Devices.

[99]  A. B. Campbell,et al.  Alpha-, boron-, silicon- and iron-ion-induced current transients in low-capacitance silicon and GaAs diodes , 1988 .

[100]  Peter E. Cottrell,et al.  Hot-electron emission in N-channel IGFET's , 1979 .

[101]  William Shockley,et al.  The theory of p-n junctions in semiconductors and p-n junction transistors , 1949, Bell Syst. Tech. J..

[102]  A. S. Grove,et al.  General Relationship for the Thermal Oxidation of Silicon , 1965 .

[103]  E. M. Buturla,et al.  Finite-element analysis of semiconductor devices: the FIELDAY program , 1981 .

[104]  R.H. Dennard,et al.  Design and experimental technology for 0.1-µm gate-length low-temperature operation FET's , 1987, IEEE Electron Device Letters.

[105]  D. Critchlow,et al.  A substrate-plate trench-capacitor (SPT) memory cell for dynamic RAM's , 1986 .

[106]  P. Lugli,et al.  The Monte Carlo Method for Semiconductor Device Simulation , 1990 .

[107]  Hemantha K. Wickramasinghe,et al.  Lateral dopant profiling with 200 nm resolution by scanning capacitance microscopy , 1989 .

[108]  Kelly,et al.  Microscopic theory of impurity-defect reactions and impurity diffusion in silicon. , 1985, Physical review letters.

[109]  R W Hockney,et al.  Computer Simulation Using Particles , 1966 .

[110]  A. Tasch,et al.  A new approach to verify and derive a transverse-field-dependent mobility model for electrons in MOS inversion layers , 1989 .

[111]  Andrew R. Neureuther,et al.  Characterization and modeling of materials for photolithographic simulation , 1990 .

[112]  Tahir-Kheli Monte Carlo evaluation of the diffusion correlation factor in concentrated lattices and comparison with an improved theory. , 1987, Physical review. B, Condensed matter.

[113]  David P. Kennedy,et al.  Analysis of the Impurity Atom Distribution Near the Diffusion Mask for a Planar p-n Junction , 1965, IBM J. Res. Dev..

[114]  William Shockley,et al.  Electrons and Holes in Semiconductors , 1952 .

[115]  S. Bandyopadhyay,et al.  A rigorous technique to couple Monte Carlo and drift-diffusion models for computationally efficient device simulation , 1987, IEEE Transactions on Electron Devices.

[116]  Edward M. Buturla,et al.  Animation and 3D Color Display of Multiple-Variable Data: Application to Semiconductor Design , 1985, IBM J. Res. Dev..

[117]  B. J. Mulvaney,et al.  Model for defect‐impurity pair diffusion in silicon , 1987 .

[118]  M. Mock A two-dimensional mathematical model of the insulated-gate field-effect transistor , 1973 .

[119]  Steven G. Duvall,et al.  An interchange format for process and device simulation , 1988, IEEE Trans. Comput. Aided Des. Integr. Circuits Syst..

[120]  Richard B. Fair,et al.  Low-thermal-budget process modeling with the PREDICT computer program , 1988 .

[121]  J. Barker,et al.  On the physics and modeling of small semiconductor devices—I , 1980 .

[122]  Massimo Rudan,et al.  Numerical solution of the hydrodynamic model for a one-dimensional semiconductor device , 1987 .

[123]  Shinji Odanaka,et al.  SMART-P: rigorous three-dimensional process simulator on a supercomputer , 1988, IEEE Trans. Comput. Aided Des. Integr. Circuits Syst..

[124]  H. Gummel A self-consistent iterative scheme for one-dimensional steady state transistor calculations , 1964 .

[125]  Nichols,et al.  Mechanisms of equilibrium and nonequilibrium diffusion of dopants in silicon. , 1989, Physical review letters.

[126]  Roberto Car,et al.  Microscopic theory of atomic diffusion mechanisms in silicon , 1984 .

[127]  S. Laux,et al.  The physics of hot-electron degradation of Si MOSFET's: Can we understand it? , 1989 .

[128]  Peter A. Markowich,et al.  The Stationary Semiconductor Device Equations. , 1987 .

[129]  J. Bardeen,et al.  Deformation Potentials and Mobilities in Non-Polar Crystals , 1950 .

[130]  Massimo Rudan,et al.  MULTI‐DIMENSIONAL DISCRETIZATION SCHEME FOR THE HYDRODYNAMIC MODEL OF SEMICONDUCTOR DEVICES , 1986 .

[131]  E. M. Azoff Energy transport numerical simulation of graded AlGaAs/GaAs heterojunction bipolar transistors , 1989 .

[132]  R. S. Muller,et al.  IGFET Analysis through numerical solution of Poisson's equation , 1968 .

[133]  R. Bate The quantum-effect device: Tomorrow's transistors , 1988 .

[134]  R. R. O'Brien,et al.  Two-dimensional mathematical analysis of a planar type junction field-effect transistor , 1969 .

[135]  Marius K. Orlowski Unified model for impurity diffusion in silicon , 1988 .

[136]  S. E. Laux,et al.  A general control-volume formulation for modeling impact ionization in semiconductor transport , 1985 .

[137]  H. H. Hansen,et al.  FEDSS—Finite-element diffusion-simulation system , 1983, IEEE Transactions on Electron Devices.

[138]  K. Lehovec,et al.  Diffusion of charged particles into a semiconductor under consideration of the built-in field , 1961 .