CoOx functionalized IrO2-Sb2O5-SnO2 anode with an enhanced activity and stability for electrocatalytic oxygen evolution

[1]  Zongping Shao,et al.  A High‐Performance Electrocatalyst for Oxygen Evolution Reaction: LiCo0.8Fe0.2O2 , 2015, Advanced materials.

[2]  L. Ai,et al.  Hierarchically porous Co 3 O 4 architectures with honeycomb-like structures for efficient oxygen generation from electrochemical water splitting , 2015 .

[3]  M. Abbas,et al.  Rising Again: Opportunities and Challenges for Platinum-Free Electrocatalysts , 2015 .

[4]  Hui Huang,et al.  Carbon quantum dots/SnO2–Co3O4 composite for highly efficient electrochemical water oxidation , 2015 .

[5]  R. Schlögl,et al.  Molecular Insight in Structure and Activity of Highly Efficient, Low-Ir Ir-Ni Oxide Catalysts for Electrochemical Water Splitting (OER). , 2015, Journal of the American Chemical Society.

[6]  Min Gyu Kim,et al.  Cobalt Oxide Electrode Doped with Iridium Oxide as Highly Efficient Water Oxidation Electrode , 2015 .

[7]  Zongping Shao,et al.  SrCo(0.9)Ti(0.1)O(3-δ) As a New Electrocatalyst for the Oxygen Evolution Reaction in Alkaline Electrolyte with Stable Performance. , 2015, ACS applied materials & interfaces.

[8]  Zongping Shao,et al.  SrNb(0.1)Co(0.7)Fe(0.2)O(3-δ) perovskite as a next-generation electrocatalyst for oxygen evolution in alkaline solution. , 2015, Angewandte Chemie.

[9]  Bryan T. Yonemoto,et al.  In situ formation of cobalt oxide nanocubanes as efficient oxygen evolution catalysts. , 2015, Journal of the American Chemical Society.

[10]  Yanyan Du,et al.  A study on the performance of IrO2–Ta2O5 coated anodes with surface treated Ti substrates , 2015 .

[11]  G. Ramos-Sánchez,et al.  Oxygen evolution in Co-doped RuO2 and IrO2: Experimental and theoretical insights to diminish electrolysis overpotential , 2014 .

[12]  D. Rosestolato,et al.  Charge-storage process in IrO2-SnO2 mixed-oxide electrodes. Role of coating composition, solution pH and Temperature , 2014 .

[13]  Hong Yang,et al.  Ca₂Mn₂O₅ as oxygen-deficient perovskite electrocatalyst for oxygen evolution reaction. , 2014, Journal of the American Chemical Society.

[14]  Mietek Jaroniec,et al.  Metal-organic framework derived hybrid Co3O4-carbon porous nanowire arrays as reversible oxygen evolution electrodes. , 2014, Journal of the American Chemical Society.

[15]  H. Tüysüz,et al.  Cobalt-Oxide-Based Materials as Water Oxidation Catalyst: Recent Progress and Challenges , 2014 .

[16]  Xunyu Lu,et al.  Unusual synergistic effects upon incorporation of Fe and/or Ni into mesoporous Co3O4 for enhanced oxygen evolution. , 2014, Chemical communications.

[17]  Hui Huang,et al.  Structure-property relationship of bifunctional MnO2 nanostructures: highly efficient, ultra-stable electrochemical water oxidation and oxygen reduction reaction catalysts identified in alkaline media. , 2014, Journal of the American Chemical Society.

[18]  W. Schuhmann,et al.  Mn(x)O(y)/NC and Co(x)O(y)/NC nanoparticles embedded in a nitrogen-doped carbon matrix for high-performance bifunctional oxygen electrodes. , 2014, Angewandte Chemie.

[19]  B. Geng,et al.  A reliable aerosol-spray-assisted approach to produce and optimize amorphous metal oxide catalysts for electrochemical water splitting. , 2014, Angewandte Chemie.

[20]  Guangyuan Zheng,et al.  Electrochemical tuning of layered lithium transition metal oxides for improvement of oxygen evolution reaction , 2014, Nature Communications.

[21]  P. Bogdanoff,et al.  Evaluation of MnOx, Mn2O3, and Mn3O4 Electrodeposited Films for the Oxygen Evolution Reaction of Water , 2014 .

[22]  Z. H. Huang,et al.  Recent development of mixed metal oxide anodes for electrochemical oxidation of organic pollutants in water , 2014 .

[23]  Jan Rossmeisl,et al.  Beyond the volcano limitations in electrocatalysis--oxygen evolution reaction. , 2014, Physical chemistry chemical physics : PCCP.

[24]  H. Tüysüz,et al.  Influence of Fe Doping on Structure and Water Oxidation Activity of Nanocast Co3O4 , 2014 .

[25]  S. Boettcher,et al.  Nickel-iron oxyhydroxide oxygen-evolution electrocatalysts: the role of intentional and incidental iron incorporation. , 2014, Journal of the American Chemical Society.

[26]  A. Alfantazi,et al.  Manganese Dioxide-based Bifunctional Oxygen Reduction/Evolution Electrocatalysts: Effect of Perovskite Doping and Potassium Ion Insertion , 2014 .

[27]  Zheng Chang,et al.  Hierarchical ZnxCo3–xO4 Nanoarrays with High Activity for Electrocatalytic Oxygen Evolution , 2014 .

[28]  P. Molina,et al.  Low pH electrolytic water splitting using earth-abundant metastable catalysts that self-assemble in situ. , 2014, Journal of the American Chemical Society.

[29]  Charles C. L. McCrory,et al.  Benchmarking heterogeneous electrocatalysts for the oxygen evolution reaction. , 2013, Journal of the American Chemical Society.

[30]  R. González-Huerta,et al.  Performance of a PEM electrolyzer using RuIrCoOx electrocatalysts for the oxygen evolution electrode , 2013 .

[31]  Michael P. Brandon,et al.  Redox and electrochemical water splitting catalytic properties of hydrated metal oxide modified electrodes. , 2013, Physical chemistry chemical physics : PCCP.

[32]  Juan Su,et al.  Efficient oxygen evolution reaction catalyzed by low-density Ni-doped Co3O4 nanomaterials derived from metal-embedded graphitic C3N4. , 2013, Chemical communications.

[33]  Frank E. Osterloh,et al.  Inorganic nanostructures for photoelectrochemical and photocatalytic water splitting. , 2013, Chemical Society reviews.

[34]  Yuyan Shao,et al.  Oxygen Electrocatalysts for Water Electrolyzers and Reversible Fuel Cells: Status and Perspective , 2012 .

[35]  Zhen He,et al.  Electrodeposition of Crystalline Co3O4—A Catalyst for the Oxygen Evolution Reaction , 2012 .

[36]  H. Over Surface chemistry of ruthenium dioxide in heterogeneous catalysis and electrocatalysis: from fundamental to applied research. , 2012, Chemical reviews.

[37]  Jun Jiang,et al.  Water oxidation electrocatalyzed by an efficient Mn3O4/CoSe2 nanocomposite. , 2012, Journal of the American Chemical Society.

[38]  Alexis T Bell,et al.  Comparison of cobalt-based nanoparticles as electrocatalysts for water oxidation. , 2011, ChemSusChem.

[39]  F. Jiao,et al.  Nanostructured MnO2: an efficient and robust water oxidation catalyst. , 2011, Chemical communications.

[40]  A. Rutherford,et al.  Artificial photosynthetic systems. Using light and water to provide electrons and protons for the synthesis of a fuel , 2011 .

[41]  James R. McKone,et al.  Solar water splitting cells. , 2010, Chemical reviews.

[42]  Guohua Chen,et al.  Effects of the geometry and operating temperature on the stability of Ti/IrO2–SnO2–Sb2O5 electrodes for O2 evolution , 2010 .

[43]  Yiying Wu,et al.  NixCo3−xO4 Nanowire Arrays for Electrocatalytic Oxygen Evolution , 2010, Advanced materials.

[44]  A. Bell,et al.  Size-Dependent Activity of Co 3 O 4 Nanoparticle Anodes for Alkaline Water Electrolysis , 2009 .

[45]  M. Isobe,et al.  Cobalt-Doped TiO2 Nanocrystallites: Radio-Frequency Thermal Plasma Processing, Phase Structure, and Magnetic Properties , 2009 .

[46]  Dong-bai Sun,et al.  Electrochemical impedance spectroscopic (EIS) investigation of the oxygen evolution reaction mechanism of Ti/IrO2 + MnO2 electrodes in 0.5 m H2SO4 solution , 2008 .

[47]  T. Meyer,et al.  Catalysis: The art of splitting water , 2008, Nature.

[48]  N. Lewis Toward Cost-Effective Solar Energy Use , 2007, Science.

[49]  S. Ardizzone,et al.  Composite ternary SnO2-IrO2-Ta2O5 oxide electrocatalysts , 2006 .

[50]  K. Domen,et al.  Photocatalyst releasing hydrogen from water , 2006, Nature.

[51]  Chi-Chang Hu,et al.  Bipolar performance of the electroplated iron-nickel deposits for water electrolysis , 2003 .

[52]  J. Boodts,et al.  Electrochemical ozone production: influence of the supporting electrolyte on kinetics and current efficiency , 2003 .

[53]  Guohua Chen,et al.  Electrochemical Behavior of Novel Ti/IrOx−Sb2O5−SnO2 Anodes , 2002 .

[54]  Guohua Chen,et al.  Stable Ti/IrOx−Sb2O5−SnO2 Anode for O2 Evolution with Low Ir Content , 2001 .

[55]  M. Matsunaga,et al.  Effects of cathodizing on the morphology and composition of IrO2Ta2O5/Ti anodes , 2000 .

[56]  Sergio Trasatti,et al.  Electrocatalysis: understanding the success of DSA® , 2000 .

[57]  Abdullah M. Asiri,et al.  Recent Progress in Cobalt‐Based Heterogeneous Catalysts for Electrochemical Water Splitting , 2016, Advanced materials.

[58]  A. Bard,et al.  Dynamic potential–pH diagrams application to electrocatalysts for water oxidation , 2012 .

[59]  Jianling Li,et al.  The electrocatalytic properties of an IrO2/SnO2 catalyst using SnO2 as a support and an assisting reagent for the oxygen evolution reaction , 2012 .

[60]  James D. Blakemore,et al.  Anodic deposition of a robust iridium-based water-oxidation catalyst from organometallic precursors , 2011 .