Revised road map to the phylum Firmicutes

Starting with the Second Edition of Bergey’s Manual of Systematic Bacteriology, the arrangement of content follows a phylogenetic framework or “road map” based largely on analyses of the nucleotide sequences of the ribosomal small-subunit RNA rather than on phenotypic data (Garrity et al., 2005). Implicit in the use of the road map are the convictions that prokaryotes have a phylogeny and that phylogeny matters. However, the reader should be aware that phylogenies, like other experimentally derived hypotheses, are not static but may change whenever new data and/or improved methods of analysis become available (Ludwig and Klenk, 2005). Thus, the large increases in data since the publication of the taxonomic outlines in the preceding volumes have led to a re-evaluation of the road map. Not surprisingly, the taxonomic hierarchy has been modified or newly interpreted for a number of taxonomic units of the Firmicutes. These changes are described in the following paragraphs. The taxonomic road map proposed in Volume 1 and updated and emended in Volume 2 was derived from phylogenetic and principal-component analyses of comprehensive datasets of smallsubunit rRNA sequences. A similar approach is continued here. Since the introduction of comparative rRNA sequencing (Ludwig and Klenk, 2005; Ludwig and Schleifer, 2005), there has been a continuous debate concerning the justification and power of a single marker molecule for elucidating and establishing the phylogeny and taxonomy of organisms, respectively. Although generally well established in taxonomy, the polyphasic approach cannot be currently applied for sequence-based analyses due to the lack of adequate comprehensive datasets for alternative marker molecules. Even in the age of genomics, the datasets for non-rRNA markers are poor in comparison to more than 300,000 rRNA primary structures available in general and special databases (Cole et al., 2007; Pruesse et al., 2007). Nevertheless, the data provided by the full genome sequencing projects allow defining a small set of genes representing the conserved core of prokaryotic genomes (Cicarelli et al., 2006; Ludwig and Schleifer, 2005). Furthermore, comparative analyses of the core gene sequences globally support the small-subunit rRNA derived view of prokaryotic evolution. Although the tree topologies reconstructed from alternative markers differ in detail, the major groups (and taxa) are verified or at least not disproved (Ludwig and Schleifer, 2005). Consequently, the structuring of this volume is based on updated and curated (http://www.arb-silva.de; Ludwig et al., 2004) databases of processed small-subunit rRNA primary structures.

[1]  S. Hanada,et al.  A novel lineage of sulfate-reducing microorganisms: Thermodesulfobiaceae fam. nov., Thermodesulfobium narugense, gen. nov., sp. nov., a new thermophilic isolate from a hot spring , 2003, Extremophiles.

[2]  W. Whitman,et al.  Gracilibacter thermotolerans gen. nov., sp. nov., an anaerobic, thermotolerant bacterium from a constructed wetland receiving acid sulfate water. , 2006, International journal of systematic and evolutionary microbiology.

[3]  P. Lawson,et al.  Atopococcus tabaci gen. nov., sp. nov., a novel Gram-positive, catalase-negative, coccus-shaped bacterium isolated from tobacco. , 2005, International journal of systematic and evolutionary microbiology.

[4]  B. Tindall,et al.  Cohnella thermotolerans gen. nov., sp. nov., and classification of 'Paenibacillus hongkongensis' as Cohnella hongkongensis sp. nov. , 2006, International journal of systematic and evolutionary microbiology.

[5]  S. Finegold,et al.  Clostridium bartlettii sp. nov., isolated from human faeces. , 2004, Anaerobe.

[6]  H. Dahle,et al.  Thermovirga lienii gen. nov., sp. nov., a novel moderately thermophilic, anaerobic, amino-acid-degrading bacterium isolated from a North Sea oil well. , 2006, International journal of systematic and evolutionary microbiology.

[7]  N. Ren,et al.  Ethanoligenens harbinense gen. nov., sp. nov., isolated from molasses wastewater. , 2006, International journal of systematic and evolutionary microbiology.

[8]  A. Lysenko,et al.  Clostridium alkalicellum sp. nov., an Obligately Alkaliphilic Cellulolytic Bacterium from a Soda Lake in the Baikal Region , 2005, Microbiology.

[9]  Souichiro Kato,et al.  Clostridium straminisolvens sp. nov., a moderately thermophilic, aerotolerant and cellulolytic bacterium isolated from a cellulose-degrading bacterial community. , 2004, International journal of systematic and evolutionary microbiology.

[10]  Hans-Peter Klenk,et al.  Overview: A Phylogenetic Backbone and Taxonomic Framework for Procaryotic Systematics , 2015 .

[11]  K. Schleifer,et al.  Halobacillus gen. nov., with Descriptions of Halobacillus litoralis sp. nov. and Halobacillus trueperi sp. nov., and Transfer of Sporosarcina halophila to Halobacillus halophilus comb. nov. , 1996 .

[12]  M. D. da Costa,et al.  Paucisalibacillus globulus gen. nov., sp. nov., a Gram-positive bacterium isolated from potting soil. , 2006, International journal of systematic and evolutionary microbiology.

[13]  E. Bonch‐Osmolovskaya,et al.  Tepidimicrobium ferriphilum gen. nov., sp. nov., a novel moderately thermophilic, Fe(III)-reducing bacterium of the order Clostridiales. , 2006, International journal of systematic and evolutionary microbiology.

[14]  K. Schleifer,et al.  ARB: a software environment for sequence data. , 2004, Nucleic acids research.

[15]  B. Snel,et al.  Toward Automatic Reconstruction of a Highly Resolved Tree of Life , 2006, Science.

[16]  P. Lawson,et al.  Subdoligranulum variabile gen. nov., sp. nov. from human feces. , 2004, Anaerobe.

[17]  J. Carlier,et al.  Moryella indoligenes gen. nov., sp. nov., an anaerobic bacterium isolated from clinical specimens. , 2007, International journal of systematic and evolutionary microbiology.

[18]  A. Nakamura,et al.  Tuberibacillus calidus gen. nov., sp. nov., isolated from a compost pile and reclassification of Bacillus naganoensis Tomimura et al. 1990 as Pullulanibacillus naganoensis gen. nov., comb. nov. and Bacillus laevolacticus Andersch et al. 1994 as Sporolactobacillus laevolacticus comb. nov. , 2006, International journal of systematic and evolutionary microbiology.

[19]  James R. Cole,et al.  The ribosomal database project (RDP-II): introducing myRDP space and quality controlled public data , 2006, Nucleic Acids Res..

[20]  Thomas Ludwig,et al.  RAxML‐II: a program for sequential, parallel and distributed inference of large phylogenetic trees , 2005, Concurr. Comput. Pract. Exp..

[21]  W. Ludwig,et al.  SILVA: a comprehensive online resource for quality checked and aligned ribosomal RNA sequence data compatible with ARB , 2007, Nucleic acids research.

[22]  I. Bonne,et al.  Oribacterium sinus gen. nov., sp. nov., within the family 'Lachnospiraceae' (phylum Firmicutes). , 2004, International journal of systematic and evolutionary microbiology.

[23]  A. Schramm,et al.  Lactovum miscens gen. nov., sp. nov., an aerotolerant, psychrotolerant, mixed-fermentative anaerobe from acidic forest soil. , 2004, Research in microbiology.

[24]  M. Cambon-Bonavita,et al.  Caloranaerobacter azorensis gen. nov., sp. nov., an anaerobic thermophilic bacterium isolated from a deep-sea hydrothermal vent. , 2001, International journal of systematic and evolutionary microbiology.

[25]  S. Haruta,et al.  Cerasibacillus quisquiliarum gen. nov., sp. nov., isolated from a semi-continuous decomposing system of kitchen refuse. , 2004, International journal of systematic and evolutionary microbiology.

[26]  M. Collins,et al.  Allobaculum stercoricanis gen. nov., sp. nov., isolated from canine feces. , 2004, Anaerobe.

[27]  C. Jeon,et al.  Reclassification of Bacillus haloalkaliphilus Fritze 1996 as Alkalibacillus haloalkaliphilus gen. nov., comb. nov. and the description of Alkalibacillus salilacus sp. nov., a novel halophilic bacterium isolated from a salt lake in China. , 2005, International journal of systematic and evolutionary microbiology.

[28]  Yasushi Yamamoto,et al.  Halolactibacillus halophilus gen. nov., sp. nov. and Halolactibacillus miurensis sp. nov., halophilic and alkaliphilic marine lactic acid bacteria constituting a phylogenetic lineage in Bacillus rRNA group 1. , 2005, International journal of systematic and evolutionary microbiology.

[29]  A. Ventosa,et al.  Thalassobacillus devorans gen. nov., sp. nov., a moderately halophilic, phenol-degrading, Gram-positive bacterium. , 2005, International journal of systematic and evolutionary microbiology.

[30]  Xiuzhu Dong,et al.  Acetanaerobacterium elongatum gen. nov., sp. nov., from paper mill waste water. , 2004, International journal of systematic and evolutionary microbiology.

[31]  F. Dewhirst,et al.  Guggenheimella bovis gen. nov., sp. nov., isolated from lesions of bovine dermatitis digitalis. , 2005, International journal of systematic and evolutionary microbiology.

[32]  T. Tourova,et al.  Anoxynatronum sibiricum gen.nov., sp.nov. alkaliphilic saccharolytic anaerobe from cellulolytic community of Nizhnee Beloe (Transbaikal region) , 2003, Extremophiles.