Presentation of electromagnetic multichannel data: The signal space separation method

Measurement of external magnetic fields provides information on electric current distribution inside an object. For example, in magnetoencephalography modern measurement devices sample the magnetic field produced by the brain in several hundred distinct locations around the head. The signal space separation (SSS) method creates a fundamental linear basis for all measurable multichannel signal vectors of magnetic origin. The SSS basis is based on the fact that the magnetic field can be expressed as a combination of two separate and rapidly converging expansions of harmonic functions with one expansion for signals arising from inside of the measurement volume of the sensor array and another for signals arising from outside of this volume. The separation is based on the different convergence volumes of the two expansions and on the fact that the sensors are located in a source current-free volume between the interesting and interfering sources. Individual terms of the expansions are shown to contain uncorrel...

[1]  E. L. Hill The Theory of Vector Spherical Harmonics , 1954 .

[2]  R. Kochendörffer Kreyszig, E.: Advanced Engineering Mathematics. J. Wiley & Sons, Inc., New York, London 1962. IX + 856 S. 402 Abb. Preis s. 79.— , 1965 .

[3]  G. Arfken Mathematical Methods for Physicists , 1967 .

[4]  D. B. Heppner,et al.  Considerations of quasi-stationarity in electrophysiological systems. , 1967, The Bulletin of mathematical biophysics.

[5]  F. W. Kellaway,et al.  Advanced Engineering Mathematics , 1969, The Mathematical Gazette.

[6]  D. Cohen,et al.  Large-volume conventional magnetic shields , 1970 .

[7]  J. B. Bronzan,et al.  The Magnetic Scalar Potential , 1971 .

[8]  J. E. Zimmerman,et al.  SQUID instruments and shielding for low‐level magnetic measurements , 1977 .

[9]  R. Ilmoniemi,et al.  Design, construction, and performance of a large-volume magnetic shield , 1982 .

[10]  J. H. Tripp Physical Concepts and Mathematical Models , 1983 .

[11]  Gene H. Golub,et al.  Matrix computations , 1983 .

[12]  John P. Wikswo,et al.  A comparison of scalar multipole expansions , 1984 .

[13]  John P. Wikswo,et al.  Scalar multipole expansions and their dipole equivalents , 1985 .

[14]  J. Sarvas Basic mathematical and electromagnetic concepts of the biomagnetic inverse problem. , 1987, Physics in medicine and biology.

[15]  R. Ilmoniemi,et al.  Sampling theory for neuromagnetic detector arrays , 1993, IEEE Transactions on Biomedical Engineering.

[16]  R. Ilmoniemi,et al.  Magnetoencephalography-theory, instrumentation, and applications to noninvasive studies of the working human brain , 1993 .

[17]  George B. Arfken,et al.  11 – BESSEL FUNCTIONS , 1985 .

[18]  Gabriel Curio,et al.  Non-invasive long-term recordings of cortical ‘direct current’ (DC–) activity in humans using magnetoencephalography , 1999, Neuroscience Letters.

[19]  Erkki Oja,et al.  Independent component approach to the analysis of EEG and MEG recordings , 2000, IEEE Transactions on Biomedical Engineering.

[20]  K. Uutela,et al.  Detecting and Correcting for Head Movements in Neuromagnetic Measurements , 2001, NeuroImage.

[21]  J. Vrba,et al.  Signal processing in magnetoencephalography. , 2001, Methods.

[22]  R. Leahy,et al.  On MEG forward modelling using multipolar expansions. , 2002, Physics in medicine and biology.

[23]  T. W. Kornack,et al.  A subfemtotesla multichannel atomic magnetometer , 2003, Nature.

[24]  John P. Wikswo SQUIDs Remain Best Tools for Measuring Brain’s Magnetic Field , 2004 .

[25]  Claude Fermon,et al.  Femtotesla Magnetic Field Measurement with Magnetoresistive Sensors , 2004, Science.

[26]  S. Taulu,et al.  Suppression of Interference and Artifacts by the Signal Space Separation Method , 2003, Brain Topography.

[27]  Alex I. Braginski,et al.  The SQUID handbook , 2006 .

[28]  R. Ilmoniemi,et al.  Signal-space projection method for separating MEG or EEG into components , 1997, Medical and Biological Engineering and Computing.

[29]  R. Ilmoniemi,et al.  Interpreting magnetic fields of the brain: minimum norm estimates , 2006, Medical and Biological Engineering and Computing.