The Information Recovery Problem

The issue of unitary evolution during creation and evaporation of a black hole remains controversial. We argue that some prominent cures are more troubling than the disease, demonstrate that their central element—forming of the event horizon before the evaporation begins—is not necessarily true, and describe a fully coupled matter-gravity system which is manifestly unitary.

[1]  Ulrich H. Gerlach The Mechanism of blackbody radiation from the incipient black hole , 1976 .

[2]  Susskind,et al.  The stretched horizon and black hole complementarity. , 1993, Physical review. D, Particles and fields.

[3]  Bernard S. Kay,et al.  Entropy and Quantum Gravity , 2015, Entropy.

[4]  Anshul Saini,et al.  Radiation from a collapsing object is manifestly unitary. , 2015, Physical review letters.

[5]  Daniel R. Terno Localization of relativistic particles and uncertainty relations , 2013, 1308.0479.

[6]  K. Bryan,et al.  Black holes and information: A new take on an old paradox , 2016, 1603.07569.

[7]  M. Horodecki,et al.  Quantum entanglement , 2007, quant-ph/0702225.

[8]  Von Welch,et al.  Reproducing GW150914: The First Observation of Gravitational Waves From a Binary Black Hole Merger , 2016, Computing in Science & Engineering.

[9]  M. Choptuik,et al.  Universality and scaling in gravitational collapse of a massless scalar field. , 1993, Physical review letters.

[10]  Ram Brustein Origin of the blackhole information paradox , 2012, 1209.2686.

[11]  Daniel R. Terno,et al.  Dynamics and entanglement in spherically symmetric quantum gravity , 2009, 0903.1471.

[12]  S. Hawking,et al.  Black hole explosions? , 1974, Nature.

[13]  Daniel R. Terno Nonlinear operations in quantum-information theory , 1999 .

[14]  Xiao Yuan,et al.  Replicating the benefits of Deutschian closed timelike curves without breaking causality , 2014, npj Quantum Information.

[15]  J. Isenberg Black Hole Physics: Basic Concepts and New Developments, by Valeri P. Frolov and Igor D. Novikov , 1998 .

[16]  S. Braunstein,et al.  Black hole evaporation rates without spacetime. , 2011, Physical review letters.

[17]  J. Baez,et al.  Wormholes and entanglement , 2014, 1401.3416.

[18]  The Ligo Scientific Collaboration,et al.  Observation of Gravitational Waves from a Binary Black Hole Merger , 2016, 1602.03837.

[19]  P. C. Vaidya Nonstatic Solutions of Einstein's Field Equations for Spheres of Fluids Radiating Energy , 1951 .

[20]  M. Visser,et al.  Fate of gravitational collapse in semiclassical gravity , 2007, 0712.1130.

[21]  M. Abramowicz,et al.  Foundations of Black Hole Accretion Disk Theory , 2011, Living reviews in relativity.

[22]  D. Bruß,et al.  Lectures on Quantum Information , 2007 .

[23]  L. Maccone Quantum solution to the arrow-of-time dilemma. , 2008, Physical review letters.

[24]  Topological censorship. , 1993, Physical review letters.

[25]  Quasi-particle creation by analogue black holes , 2006, gr-qc/0604058.

[26]  L. Krauss,et al.  Observation of Incipient Black Holes and the Information Loss Problem , 2006, gr-qc/0609024.

[27]  S. Hawking Breakdown of Predictability in Gravitational Collapse , 1976 .

[28]  T. Ralph,et al.  Relativistic quantum information , 2012, Physics Subject Headings (PhySH).

[29]  L. Susskind,et al.  Cool horizons for entangled black holes , 2013, 1306.0533.

[30]  J. Polchinski,et al.  Black holes: complementarity or firewalls? , 2012, Journal of High Energy Physics.

[31]  E. Poisson A Relativist's Toolkit: The Mathematics of Black-Hole Mechanics , 2004 .

[32]  G. Venturi,et al.  Gravitational collapse of a radiating shell , 2001, gr-qc/0102014.

[33]  J. Louko Unruh-DeWitt detector response across a Rindler firewall is finite , 2014, 1407.6299.

[34]  W. Unruh,et al.  Energy-momentum tensor near an evaporating black hole , 1976 .

[35]  S. Braunstein,et al.  Better late than never: information retrieval from black holes. , 2009, Physical review letters.

[36]  R. Mann Black Holes: Thermodynamics, Information, and Firewalls , 2015 .

[37]  J. Preskill,et al.  Unitarity of black hole evaporation in final-state projection models , 2013, 1308.4209.

[38]  Insights and possible resolution to the information loss paradox via the tunneling picture , 2010 .

[39]  Mark M. Wilde,et al.  Quantum Information Theory , 2013 .

[40]  Global structure of evaporating black holes , 1998, gr-qc/9807031.

[41]  N. Gurlebeck No-hair theorem for Black Holes in Astrophysical Environments , 2015, 1503.03240.

[42]  Ji-rong Ren,et al.  Insights and possible resolution to the information loss paradox via the tunneling picture , 2010, 1005.3778.

[43]  F. Wilczek,et al.  Hawking radiation As tunneling , 1999, Physical review letters.

[44]  Seth Lloyd,et al.  Closed timelike curves via postselection: theory and experimental test of consistency. , 2010, Physical review letters.

[45]  Q. Cai,et al.  No Information Is Lost: a Revisit of Black Hole Information Loss Paradox , 2009 .

[46]  Karol Życzkowski,et al.  Dynamics beyond completely positive maps : some properties and applications , 2008 .

[47]  J. Maldacena,et al.  The black hole final state , 2003, hep-th/0310281.

[48]  J. Pullin,et al.  Relational Physics with Real Rods and Clocks and the Measurement Problem of Quantum Mechanics , 2006, quant-ph/0608243.

[49]  N. Gürlebeck No-hair theorem for black holes in astrophysical environments. , 2015, Physical review letters.

[50]  J. Kimball,et al.  Localization and causality for a free particle , 2003 .

[51]  LETTER TO THE EDITOR: Decoherence of macroscopic closed systems within Newtonian quantum gravity , 1998, hep-th/9810077.

[52]  Stephen W Hawking,et al.  Soft Hair on Black Holes. , 2016, Physical review letters.

[53]  Daniel R. Terno,et al.  Quantum Information and Relativity Theory , 2002, quant-ph/0212023.

[54]  S. Massar,et al.  A primer for black hole quantum physics , 1995, 0710.4345.

[55]  D. Harlow,et al.  Jerusalem Lectures on Black Holes and Quantum Information , 2014, 1409.1231.

[56]  C. Misner Wormhole Initial Conditions , 1960 .

[57]  R. Wald,et al.  The Thermodynamics of Black Holes , 2001, Living reviews in relativity.

[58]  Y. Yokokura,et al.  A Self-consistent Model of the Black Hole Evaporation , 2013, 1302.4733.

[59]  Qing-yu Cai,et al.  Information conservation is fundamental: recovering the lost information in Hawking radiation , 2013, 1305.6341.

[60]  Tal Mor,et al.  Sufficient conditions for a disentanglement , 1999 .

[61]  S. Giddings Hawking radiation, the Stefan–Boltzmann law, and unitarization , 2015, 1511.08221.

[62]  Daniel R. Terno,et al.  Role of evaporation in gravitational collapse , 2016, Classical and Quantum Gravity.