Digraph homomorphism problem and weak near unanimity polymorphism.

We consider the problem of finding a homomorphism from an input digraph $G$ to a fixed digraph $H$. We show that if $H$ admits a weak near unanimity polymorphism $\phi$ then deciding whether $G$ admits a homomorphism to $H$ (HOM($H$)) is polynomial-time solvable. This gives proof of the dichotomy conjecture (now dichotomy theorem) by Feder and Vardi. Our approach is combinatorial, and it is simpler than the two algorithms found by Bulatov and Zhuk. We have implemented our algorithm and show some experimental results. We use our algorithm together with the recent result [38] for recognition of Maltsev polymorphisms and decide in polynomial time if a given relational structure $\mathcal{R}$ admits a weak near unanimity polymorphism.

[1]  M. Maróti,et al.  Existence theorems for weakly symmetric operations , 2008 .

[2]  Sanjeev Khanna,et al.  Complexity classifications of Boolean constraint satisfaction problems , 2001, SIAM monographs on discrete mathematics and applications.

[3]  Péter Csikvári,et al.  Graph Homomorphisms between Trees , 2013, Electron. J. Comb..

[4]  Peter Jeavons,et al.  On the Algebraic Structure of Combinatorial Problems , 1998, Theor. Comput. Sci..

[5]  Pavol Hell,et al.  The Dichotomy of Minimum Cost Homomorphism Problems for Digraphs , 2012, SIAM J. Discret. Math..

[6]  Víctor Dalmau,et al.  A new tractable class of constraint satisfaction problems , 2005, Annals of Mathematics and Artificial Intelligence.

[7]  KumarVipin Algorithms for constraint-satisfaction problems , 1992 .

[8]  Pavol Hell,et al.  List Homomorphisms to Reflexive Graphs , 1998, J. Comb. Theory, Ser. B.

[9]  Jin-Yi Cai,et al.  Graph Homomorphisms with Complex Values: A Dichotomy Theorem , 2013, SIAM J. Comput..

[10]  Neil Immerman,et al.  The complexity of satisfiability problems: Refining Schaefer's theorem , 2009, J. Comput. Syst. Sci..

[11]  Andrei A. Krokhin,et al.  CSP duality and trees of bounded pathwidth , 2010, Theor. Comput. Sci..

[12]  Leo G. Kroon,et al.  The Optimal Cost Chromatic Partition Problem for Trees and Interval Graphs , 1996, WG.

[13]  Thomas J. Schaefer,et al.  The complexity of satisfiability problems , 1978, STOC.

[14]  Libor Barto,et al.  The CSP Dichotomy Holds for Digraphs with No Sources and No Sinks (A Positive Answer to a Conjecture of Bang-Jensen and Hell) , 2008, SIAM J. Comput..

[15]  Richard C. Brewster,et al.  Near-Unanimity Functions and Varieties of Reflexive Graphs , 2008, SIAM J. Discret. Math..

[16]  Benoît Larose,et al.  The Complexity of the Extendibility Problem for Finite Posets , 2003, SIAM J. Discret. Math..

[17]  Arash Rafiey,et al.  Digraphs Homomorphism Problems with Maltsev Condition , 2020, ArXiv.

[18]  Hubie Chen,et al.  Asking the Metaquestions in Constraint Tractability , 2016, TOCT.

[19]  Tomás Feder,et al.  A Dichotomy Theorem on Fixed Points of Several Nonexpansive Mappings , 2006, SIAM J. Discret. Math..

[20]  Richard E. Ladner,et al.  On the Structure of Polynomial Time Reducibility , 1975, JACM.

[21]  Gary MacGillivray,et al.  The Complexity of Colouring by Semicomplete Digraphs , 1988, SIAM J. Discret. Math..

[22]  P. Hell,et al.  Sparse pseudo-random graphs are Hamiltonian , 2003 .

[23]  Iain A. Stewart,et al.  Dichotomies for classes of homomorphism problems involving unary functions , 2004, Theor. Comput. Sci..

[24]  Alexandr Kazda,et al.  Maltsev digraphs have a majority polymorphism , 2009, Eur. J. Comb..

[25]  Claude Tardif,et al.  Graphs Admitting k-NU Operations. Part 1: The Reflexive Case , 2013, SIAM J. Discret. Math..

[26]  Moshe Y. Vardi Constraint satisfaction and database theory: a tutorial , 2000, PODS.