Behavior-oriented vision for biomimetic flight control

Most flying insects extract information about their spatial orientation and self-motion from visual cues such as global patterns of light intensity or optic flow. We present an insect-inspired neuronal filter model and show how optimal receptive fields for the detection of flight-relevant input patterns can be derived directly from the local receptor signals during typical flight behavior. Using a least squares principle, the receptive fields are optimally adapted to all behaviorally relevant, invariant properties of the agent and the environment. In closed-loop simulations in a highly realistic virtual environment we show that four independent, purely reactive mechanisms based on optimized receptive fields for attitude control, course stabilization, obstacle avoidance and altitude control, are sufficient for a fully autonomous and robust flight stabilization with all six degrees of freedom.

[1]  Karl Georg Götz,et al.  Flight control in Drosophila by visual perception of motion , 1968, Kybernetik.

[2]  William H. Press,et al.  Numerical recipes in C , 2002 .

[3]  Heinrich H. Bülthoff,et al.  Insect Inspired Visual Control of Translatory Flight , 2001, ECAL.

[4]  Svetha Venkatesh,et al.  Insect inspired behaviours for the autonomous control of mobile robots , 1996, Proceedings of 13th International Conference on Pattern Recognition.

[5]  Svetha Venkatesh,et al.  How honeybees make grazing landings on flat surfaces , 2000, Biological Cybernetics.

[6]  J. Brackenbury Insects in Flight , 1992 .

[7]  Heinrich H. Bülthoff,et al.  On robots and flies: Modeling the visual orientation behavior of flies , 1999, Robotics Auton. Syst..

[8]  Fabrizio Mura,et al.  Visual control of altitude and speed in a flying agent , 1994 .

[9]  Nancy Forbes Imitation of Life , 2004 .

[10]  V. Braitenberg Vehicles, Experiments in Synthetic Psychology , 1984 .

[11]  B. Hassenstein,et al.  Systemtheoretische Analyse der Zeit-, Reihenfolgen- und Vorzeichenauswertung bei der Bewegungsperzeption des Rüsselkäfers Chlorophanus , 1956 .

[12]  R. Hengstenberg,et al.  Optical properties of the ocelli of Calliphora erythrocephala and their role in the dorsal light response , 1993, Journal of Comparative Physiology A.

[13]  R. Hengstenberg,et al.  Compensatory head roll in the blowfly Calliphora during flight , 1986, Proceedings of the Royal Society of London. Series B. Biological Sciences.

[14]  F. A. Miles,et al.  Visual Motion and Its Role in the Stabilization of Gaze , 1992 .

[15]  Andreas Zell,et al.  Can fly tangential neurons be used to estimate self-motion? , 1999 .

[16]  R. Hengstenberg,et al.  Estimation of self-motion by optic flow processing in single visual interneurons , 1996, Nature.

[17]  M V Srinivasan,et al.  How insects infer range from visual motion. , 1993, Reviews of oculomotor research.

[18]  W. Walter An Imitation of Life , 1950 .