Efficient Quantum Pseudorandomness.

Randomness is both a useful way to model natural systems and a useful tool for engineered systems, e.g., in computation, communication, and control. Fully random transformations require exponential time for either classical or quantum systems, but in many cases pseudorandom operations can emulate certain properties of truly random ones. Indeed, in the classical realm there is by now a well-developed theory regarding such pseudorandom operations. However, the construction of such objects turns out to be much harder in the quantum case. Here, we show that random quantum unitary time evolutions ("circuits") are a powerful source of quantum pseudorandomness. This gives for the first time a polynomial-time construction of quantum unitary designs, which can replace fully random operations in most applications, and shows that generic quantum dynamics cannot be distinguished from truly random processes. We discuss applications of our result to quantum information science, cryptography, and understanding the self-equilibration of closed quantum dynamics.

[1]  A. Harrow,et al.  Random Quantum Circuits are Approximate 2-designs , 2008, 0802.1919.

[2]  Debbie W. Leung,et al.  Quantum data hiding , 2002, IEEE Trans. Inf. Theory.

[3]  I. Diniz,et al.  Comment on “Random Quantum Circuits are Approximate 2-designs” by A.W. Harrow and R.A. Low (Commun. Math. Phys. 291, 257–302 (2009)) , 2011 .

[4]  A. Winter,et al.  Randomizing Quantum States: Constructions and Applications , 2003, quant-ph/0307104.

[5]  Daniel Braun,et al.  Efficiency of producing random unitary matrices with quantum circuits , 2008, 0807.0775.

[6]  F. Brandão,et al.  Local random quantum circuits are approximate polynomial-designs: numerical results , 2012, 1208.0692.

[7]  Roderich Tumulka,et al.  Canonical typicality. , 2006, Physical review letters.

[8]  Claude E. Shannon,et al.  The synthesis of two-terminal switching circuits , 1949, Bell Syst. Tech. J..

[9]  Michael W. Mahoney,et al.  Simple permutations mix even better , 2008 .

[10]  M. B. Plenio,et al.  The emergence of typical entanglement in two-party random processes , 2007 .

[11]  A. Arnaud,et al.  in the Approximation , 1974 .

[12]  John von Neumann,et al.  Proof of the ergodic theorem and the H-theorem in quantum mechanics , 2010, 1003.2133.

[13]  Seth Lloyd,et al.  Pseudo-Random Unitary Operators for Quantum Information Processing , 2003, Science.

[14]  Thierry Paul,et al.  Quantum computation and quantum information , 2007, Mathematical Structures in Computer Science.

[15]  Michal Horodecki,et al.  Local random quantum circuits are approximate polynomial-designs: numerical results , 2012 .

[16]  Silvio Micali,et al.  How to construct random functions , 1986, JACM.

[17]  A. Winter,et al.  Aspects of Generic Entanglement , 2004, quant-ph/0407049.

[18]  Jaikumar Radhakrishnan,et al.  Random Measurement Bases, Quantum State Distinction and Applications to the Hidden Subgroup Problem , 2005, 21st Annual IEEE Conference on Computational Complexity (CCC'06).

[19]  Noga Alon,et al.  A Fast and Simple Randomized Parallel Algorithm for the Maximal Independent Set Problem , 1985, J. Algorithms.

[20]  Aram Wettroth Harrow,et al.  Efficient Quantum Tensor Product Expanders and k-Designs , 2008, APPROX-RANDOM.

[21]  Richard Andrew Low,et al.  Pseudo-randonmess and Learning in Quantum Computation , 2010, 1006.5227.

[22]  R. Oliveira On the convergence to equilibrium of Kac’s random walk on matrices , 2007, 0705.2253.

[23]  Juan Jose Garcia-Ripoll,et al.  Efficient algorithm for multi-qudit twirling , 2006, quant-ph/0609052.

[24]  J. Neumann,et al.  Beweis des Ergodensatzes und desH-Theorems in der neuen Mechanik , 1929 .

[25]  J. Cirac,et al.  Strong and weak thermalization of infinite nonintegrable quantum systems. , 2010, Physical review letters.

[26]  Michal Horodecki,et al.  Exponential quantum speed-ups are generic , 2010, Quantum Inf. Comput..

[27]  E. Knill Approximation by Quantum Circuits , 1995 .

[28]  Daniel Jonathan,et al.  Comment on the paper"Random Quantum Circuits are Approximate 2-designs" , 2010 .

[29]  Bruno Nachtergaele The spectral gap for some spin chains with discrete symmetry breaking , 1996 .

[30]  Jean Bourgain,et al.  A Spectral Gap Theorem in $SU(d)$ , 2011, 1108.6264.

[31]  A. Winter,et al.  The mother of all protocols: restructuring quantum information’s family tree , 2006, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[32]  Marko Znidaric,et al.  Exact convergence times for generation of random bipartite entanglement , 2008, 0809.0554.

[33]  Francesco Petruccione,et al.  The Theory of Open Quantum Systems , 2002 .

[34]  J. Eisert,et al.  Probing the relaxation towards equilibrium in an isolated strongly correlated one-dimensional Bose gas , 2011, Nature Physics.

[35]  L. Viola,et al.  Convergence rates for arbitrary statistical moments of random quantum circuits. , 2009, Physical review letters.

[36]  R. Nandkishore,et al.  Many-Body Localization and Thermalization in Quantum Statistical Mechanics , 2014, 1404.0686.

[37]  L. Susskind Computational complexity and black hole horizons , 2014, 1402.5674.

[38]  R. A. Low Large deviation bounds for k-designs , 2009, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[39]  P. Hayden,et al.  Black holes as mirrors: Quantum information in random subsystems , 2007, 0708.4025.

[40]  A. J. Short,et al.  Quantum mechanical evolution towards thermal equilibrium. , 2008, Physical review. E, Statistical, nonlinear, and soft matter physics.

[41]  R.Oliveira,et al.  Efficient Generation of Generic Entanglement , 2006 .

[42]  F. Haake Quantum signatures of chaos , 1991 .