Mechanisms of Shell Formation and Dissolution

[1]  J. Neff,et al.  Ultrastructure of the outer epithelium of the mantle in the clam Mercenaria mercenaria in relation to calcification of the shell. , 1972, Tissue & cell.

[2]  E. A. Davidson,et al.  Structure-function relationships of protein polysaccharide complexes: specific ion-binding properties. , 1968, Proceedings of the National Academy of Sciences of the United States of America.

[3]  K. Wilbur,et al.  STUDIES ON SHELL FORMATION. IV. THE RESPIRATORY METABOLISM OF THE OYSTER MANTLE , 1955 .

[4]  D. W. Pashley Recent Developments in the Study of Epitaxy , 1970 .

[5]  H. Thiele Geordnete Kristallisation. Nucleation und Mineralisation , 1967 .

[6]  K. Iwata Ultrastructure of the Conchiolin Matrices in Molluscan Nacreous Layer , 1975 .

[7]  H. Nakahara,et al.  Correlation of lysosomal activity and ingestion by the mantle epithelium. , 1966, The Biological bulletin.

[8]  C. Laurent,et al.  Sur Les Constituants Organiques Des Coquilles D'Étherides , 1969 .

[9]  J. Maetz,et al.  Perméabilité au calcium du manteau de lamellibranches d'eau douce étudiée à l'aide des isotopes 45Ca et 47Ca , 1964 .

[10]  S. Hunt Polysaccharide-protein complexes in invertebrates , 1970 .

[11]  P. Grégoire SUR LA STRUCTURE DES MATRICES ORGANIQUES DES COQUILLES DE MOLLUSQUES , 1967 .

[12]  D. Rhoads,et al.  Anaerobiosis and a theory of growth line formation. , 1977, Science.

[13]  D. Erlij,et al.  PERMEABLE JUNCTIONAL COMPLEXES , 1972, The Journal of cell biology.

[14]  M. Crenshaw THE INORGANIC COMPOSITION OF MOLLUSCAN EXTRAPALLIAL FLUID. , 1972, The Biological bulletin.

[15]  C. Hammen Metabolism of the Oyster, Crassostrea virginica , 1969 .

[16]  G. Newell CHAPTER 2 – Physiological Aspects of the Ecology of Intertidal Molluscs , 1964 .

[17]  S. Weiner,et al.  Discrete molecular weight components of the organic matrices of mollusc shells , 1977 .

[18]  H. Levitin The Chemical Dynamics of Bone Mineral , 1959, The Yale Journal of Biology and Medicine.

[19]  A. Saleuddin Electron microscopic study of the mantle of normal and regenerating Helix. , 1970, Canadian journal of zoology.

[20]  J. B. Collip STUDIES ON MOLLUSCAN CELOMIC FLUID EFFECT OF CHANGE IN ENVIRONMENT ON THE CARBON DIOXIDE CONTENT OF THE CELOMIC FLUID. ANAEROBIC RESPIRATION IN MYA ARENARIA , 1920 .

[21]  C. Hammen RESPIRATORY ADAPTATIONS: INVERTEBRATES , 1976 .

[22]  J. W. Simpson,et al.  The pathway of glucose degradation in some invertebrates. , 1966, Comparative biochemistry and physiology.

[23]  R. Schultz,et al.  Ordered Water and the Ultrastructure of the Cellular Plasma Membrane , 1970 .

[24]  J. Widdows,et al.  Physiological and biochemical responses of bivalve molluscs to exposure to air , 1979 .

[25]  J. Neff,et al.  Decalcification at the Mantle-Shell Interface in Molluscs , 1969 .

[26]  E. Kuenzler STRUCTURE AND ENERGY FLOW OF A MUSSEL POPULATION IN A GEORGIA SALT MARSH1 , 1961 .

[27]  P. Blackwelder,et al.  SHELL GROWTH IN THE SCALLOP ARGOPECTEN IRRADIANS. I. ISOTOPE INCORPORATION WITH REFERENCE TO DIURNAL GROWTH. , 1975, The Biological bulletin.

[28]  G. Gäde,et al.  Anaerobic metabolism of the common cockle, Cardium edule. I.--The utilization of glycogen and accumulation of multiple end products. , 1975, Archives internationales de physiologie et de biochimie.

[29]  L. H. Jodrey STUDIES ON SHELL FORMATION. III. MEASUREMENT OF CALCIUM DEPOSITION IN SHELL AND CALCIUM TURNOVER IN MANTLE TISSUE USING THE MANTLE-SHELL PREPARATION AND Ca45 , , 1953 .

[30]  K. Wilbur CHAPTER 8 – Shell Formation and Regeneration , 1964 .

[31]  J. B. Collip A FURTHER STUDY OF THE RESPIRATORY PROCESSES IN MYA ARENARIA AND OTHER MARINE MOLLUSCA , 1921 .

[32]  H. Theede Comparative studies on the influence of oxygen deficiency and hydrogen sulphide on marine bottom invertebrates , 1973 .

[33]  J. Loxton,et al.  Tissue differences in the response of the mussel Mytilus edulis to experimentally induced anaerobiosis. , 1976, Biochemical Society Transactions.

[34]  K. Wilbur,et al.  STUDIES ON SHELL FORMATION. I. MEASUREMENT OF THE RATE OF SHELL FORMATION USING Ca45 , 1952 .

[35]  L. Dugal The use of calcareous shell to buffer the product of anaerobic glycolysis in Venus mercenaria , 1939 .

[36]  A. Zwaan,et al.  Anaerobic metabolism in Bivalvia (Mollusca). Characteristics of anaerobic metabolism. , 1976, Comparative biochemistry and physiology. B, Comparative biochemistry.

[37]  T. M. Stokes,et al.  Alanine and succinate as end-products of glucose degradation in the clam Rangia cuneata☆ , 1968 .

[38]  D. Rhoads,et al.  EVOLUTIONARY AND ECOLOGIC SIGNIFICANCE OF OXYGEN‐DEFICIENT MARINE BASINS , 1971 .

[39]  W. H. Murphy,et al.  Carbohydrate–Peptide Linkages in Glycoproteins and Methods for their Elucidation , 1962, Nature.

[40]  C. R. Boyden Aerial respiration of the cockle Cerastoderma edule in relation to temperature , 1972 .

[41]  A. DeZwaan,et al.  Facultative anaerobiosis in molluscs. , 1976 .

[42]  Conrad Chen,et al.  Effect of oxygen on the end-products of glycolysis in Rangia cuneata , 1969 .

[43]  M. R. Carriker,et al.  Growth Lines in a Bivalve Mollusk: Subdaily Patterns and Dissolution of the Shell , 1978, Science.

[44]  S. Weiner,et al.  Soluble protein of the organic matrix of mollusk shells: a potential template for shell formation , 1975, Science.