ROBUST ESTIMATION OF SMALL‐AREA MEANS AND QUANTILES

Small‐area estimation techniques have typically relied on plug‐in estimation based on models containing random area effects. More recently, regression M‐quantiles have been suggested for this purpose, thus avoiding conventional Gaussian assumptions, as well as problems associated with the specification of random effects. However, the plug‐in M‐quantile estimator for the small‐area mean can be shown to be the expected value of this mean with respect to a generally biased estimator of the small‐area cumulative distribution function of the characteristic of interest. To correct this problem, we propose a general framework for robust small‐area estimation, based on representing a small‐area estimator as a functional of a predictor of this small‐area cumulative distribution function. Key advantages of this framework are that it naturally leads to integrated estimation of small‐area means and quantiles and is not restricted to M‐quantile models. We also discuss mean squared error estimation for the resulting estimators, and demonstrate the advantages of our approach through model‐based and design‐based simulations, with the latter using economic data collected in an Australian farm survey.

[1]  C. R. Henderson ESTIMATION OF VARIANCE AND COVARIANCE COMPONENTS , 1953 .

[2]  Richard M. Royall,et al.  Variance Estimation in Finite Population Sampling , 1978 .

[3]  R. Fay,et al.  Estimates of Income for Small Places: An Application of James-Stein Procedures to Census Data , 1979 .

[4]  N. Duan Smearing Estimate: A Nonparametric Retransformation Method , 1983 .

[5]  R. Chambers,et al.  Estimating distribution functions from survey data , 1986 .

[6]  R. Chambers Outlier Robust Finite Population Estimation , 1986 .

[7]  R. Koenker,et al.  Computing regression quantiles , 1987 .

[8]  Ou Ziqiang,et al.  Estimation of variance and covariance components , 1989 .

[9]  J. Rao,et al.  On estimating distribution functions and quantiles from survey data using auxiliary information , 1990 .

[10]  Robert Chambers,et al.  Properties of estimators of the finite population distribution function , 1992 .

[11]  Alan H. Dorfman,et al.  Bias Robust Estimation in Finite Populations Using Nonparametric Calibration , 1993 .

[12]  A. Welsh,et al.  Robust Restricted Maximum Likelihood in Mixed Linear Models , 1995 .

[13]  Alan H. Dorfman,et al.  A new estimator for the finite population distribution function , 1996 .

[14]  Jens Breckling,et al.  A Measure of Production Performance , 1997 .

[15]  Alice Richardson,et al.  Bounded Influence Estimation in the Mixed Linear Model , 1997 .

[16]  P. Hall,et al.  Bandwidth selection for the smoothing of distribution functions , 1998 .

[17]  E. Ronchetti,et al.  Bias‐calibrated estimation from sample surveys containing outliers , 1998 .

[18]  Christina Gloeckner,et al.  Modern Applied Statistics With S , 2003 .

[19]  J. Rao Small Area Estimation , 2003 .

[20]  Wenceslao González-Manteiga,et al.  Bootstrapping the Dorfman–Hall–Chambers–Dunstan estimator of a finite population distribution function , 2004 .

[21]  R. Koenker Quantile Regression: Name Index , 2005 .

[22]  Robert Chambers,et al.  Conditional ordering using nonparametric expectiles , 2005 .

[23]  Qi Li,et al.  Nonparametric Econometrics: Theory and Practice , 2006 .

[24]  N. Tzavidis,et al.  M-quantile models for small area estimation , 2006 .

[25]  Robert Chambers,et al.  On Robust Mean Squared Error Estimation for Linear Predictors for Domains , 2007 .

[26]  R. Koenker,et al.  Regression Quantiles , 2007 .

[27]  Lixia Diao,et al.  Robust small area estimation , 2008 .

[28]  Paul H. Garthwaite,et al.  Properties of Estimators , 2011, International Encyclopedia of Statistical Science.

[29]  Danny Pfeffermann,et al.  Small Area Estimation , 2011, International Encyclopedia of Statistical Science.