Exploring web neighbours in exploratory search

Purpose – Access to related information is a key requirement for exploratory search. The purpose of this research is to understand where related information may be found and how it may be explored by users.Design/methodology/approach – Earlier research provides sufficient evidence that web graph neighborhoods of returned search results may contain documents related to users' intended search topic. However, in the literature, no interface mechanisms have been presented to enable exploration of these neighborhoods by users. Based on a modified web graph, this paper proposes tools and methods for displaying and exploring the graph neighborhood of any selected item in the search results list. Important issues that arise when implementing such an exploration model are discussed and utility of the proposed system is evaluated with user experiments.Findings – In user experiments first, information related to intended search topic was often found in the web neighborhood of search results; second, exploring these ...

[1]  Frank M. Shipman,et al.  Generating Web-based presentations in spatial hypertext , 1997, IUI '97.

[2]  James D. Hollan,et al.  Graphical Multiscale Web Histories: A Study of PadPrints , 2003 .

[3]  Robin Jeffries,et al.  Orienteering in an information landscape: how information seekers get from here to there , 1993, INTERCHI.

[4]  Oren Etzioni,et al.  Grouper: A Dynamic Clustering Interface to Web Search Results , 1999, Comput. Networks.

[5]  James Allan,et al.  Improving Interactive Retrieval by Combining Ranked List and Clustering , 2000, RIAO.

[6]  Marti A. Hearst,et al.  Finding the flow in web site search , 2002, CACM.

[7]  C. Lee Giles,et al.  Self-Organization and Identification of Web Communities , 2002, Computer.

[8]  Peter Dömel,et al.  WebMap: A Graphical Hypertext Navigation Tool , 1995, Comput. Networks ISDN Syst..

[9]  Amanda Spink,et al.  Real life, real users, and real needs: a study and analysis of user queries on the web , 2000, Inf. Process. Manag..

[10]  Jon M. Kleinberg,et al.  Inferring Web communities from link topology , 1998, HYPERTEXT '98.

[11]  Marc A. Smith,et al.  Visualization components for persistent conversations , 2001, CHI.

[12]  Monika Henzinger,et al.  Finding Related Pages in the World Wide Web , 1999, Comput. Networks.

[13]  Ben Shneiderman,et al.  From Keyword Search to Exploration: How Result Visualization Aids Discovery on the Web , 2008 .

[14]  David Mease,et al.  Evaluating web search using task completion time , 2009, SIGIR.

[15]  D. Joanes,et al.  Comparing measures of sample skewness and kurtosis , 1998 .

[16]  Christine L. Borgman,et al.  Why are online catalogsstill hard to use , 1996 .

[17]  Rick Kazman,et al.  WebQuery: Searching and Visualizing the Web Through Connectivity , 1997, Comput. Networks.

[18]  George G. Robertson,et al.  The WebBook and the Web Forager: an information workspace for the World-Wide Web , 1996, CHI.

[19]  Vijay V. Raghavan,et al.  CONTENT AND LINK STRUCTURE ANALYSIS FOR SEARCHING THE WEB , 2004 .

[20]  Alberto O. Mendelzon,et al.  Visual web surfing with Hy+ , 1995, CASCON.

[21]  Francis J. Devadason,et al.  Faceted indexing based system for organizing and accessing Internet resources , 2002 .

[22]  Andy Cockburn,et al.  WebView: A Graphical Aid for Revisiting Web Pages , 1999 .

[23]  Stéphane Bressan,et al.  Clustering web documents using co-citation, coupling, incoming, and outgoing hyperlinks: a comparative performance analysis of algorithms , 2006, Int. J. Web Inf. Syst..

[24]  Christine L. Borgman,et al.  Why are online catalogs still hard to use , 1996 .

[25]  Gary Marchionini,et al.  Exploratory search , 2006, Commun. ACM.

[26]  Jens-Erik Mai,et al.  Classification of the Web: Challenges and Inquiries , 2004 .

[27]  W. Bruce Croft,et al.  An Evaluation of Techniques for Clustering Search Results , 2005 .

[28]  Andrei Z. Broder,et al.  Graph structure in the Web , 2000, Comput. Networks.

[29]  Loren G. Terveen,et al.  Finding and visualizing inter-site clan graphs , 1998, CHI.

[30]  Ben Shneiderman,et al.  BROWSING LARGE ONLINE DATA WITH QUERY PREVIEWS , 2007 .

[31]  Israel Ben-Shaul,et al.  WebCutter: A System for Dynamic and Tailorable Site Mapping , 1997, Comput. Networks.

[32]  Ivan Herman,et al.  Graph Visualization and Navigation in Information Visualization: A Survey , 2000, IEEE Trans. Vis. Comput. Graph..

[33]  Sougata Mukherjea,et al.  Visualizing the World-Wide Web with the Navigational View Builder , 1995, Comput. Networks ISDN Syst..

[34]  Edward A. Fox,et al.  Recent Developments in Document Clustering , 2007 .

[35]  Amanda Spink,et al.  Patterns and transitions of query reformulation during web searching , 2007, Int. J. Web Inf. Syst..

[36]  Tamara Munzner,et al.  Visualizing the structure of the World Wide Web in 3D hyperbolic space , 1995, VRML '95.

[37]  Ning Yu,et al.  The Best of Both Worlds: A Hybrid Approach to the Construction of Faceted Vocabularies , 2004 .

[38]  Yih-Farn Robin Chen,et al.  WebCiao: A Website Visualization and Tracking System , 1997, WebNet.

[39]  Marti A. Hearst,et al.  Cat-a-Cone: an interactive interface for specifying searches and viewing retrieval results using a large category hierarchy , 1997, SIGIR '97.

[40]  Mohamed M. Abdallah,et al.  Efficient evaluation of relevance feedback algorithms for XML content-based retrieval systems , 2010, Int. J. Web Inf. Syst..

[41]  Marti A. Hearst Clustering versus faceted categories for information exploration , 2006, Commun. ACM.

[42]  Amanda Spink,et al.  Determining the user intent of web search engine queries , 2007, WWW '07.