A Periodic Walk through a Series of First‐Row, Oxido‐Bridged, Heterodimetallic Molecules: Synthesis and Structure

A series of heterodimetallic molecules, centered around an LTi=OM2+L′ (M = Mn, Fe, Co, Ni, Cu, Zn) core, are described. Each of these complexes are structurally similar, with L = tmtaa and L′ = Py5Me2. The Ti=OM linkage is slightly bent, varying from 157° (Mn) to 170° (Zn), with bond lengths typical of a dative bond between the Ti=O group and the M2+ center. The relative strength of the heterodimetallic linkage is correlated with the Lewis acidity of the M2+ precursor, with Mn2+ showing the strongest interaction and Ni2+ the weakest. By varying the metal identity the electrochemical properties of the molecules can be tuned, along with the M3+/2+ redox couple. This series of complexes provide a platform for studying structure/function relationships in heterodimetallic molecules linked through a single atom. For instance, spectroscopic features such as IR stretching frequencies can be roughly correlated with structural features such as bond lengths and angles.

[1]  Christopher J. Chang,et al.  Metal-polypyridyl catalysts for electro- and photochemical reduction of water to hydrogen. , 2015, Accounts of chemical research.

[2]  J. Long,et al.  Water-Soluble Iron(IV)-Oxo Complexes Supported by Pentapyridine Ligands: Axial Ligand Effects on Hydrogen Atom and Oxygen Atom Transfer Reactivity. , 2015, Inorganic chemistry.

[3]  W. W. Weare,et al.  Synthesis of Unsupported d(1)-d(x) Oxido-Bridged Heterobimetallic Complexes Containing V(IV): A New Direction for Metal-to-Metal Charge Transfer. , 2015, Inorganic chemistry.

[4]  W. W. Weare,et al.  Mono‐Oxido‐Bridged Heterobimetallic and Heterotrimetallic Compounds Containing Titanium(IV) and Chromium(III) , 2014 .

[5]  F. Neese,et al.  A well-defined terminal vanadium(III) oxo complex. , 2014, Inorganic chemistry.

[6]  Wooyul Kim,et al.  Light induced carbon dioxide reduction by water at binuclear ZrOCo(II) unit coupled to Ir oxide nanocluster catalyst. , 2014, Journal of the American Chemical Society.

[7]  H. Frei,et al.  Excited State Electron Transfer of All-Inorganic Heterobinuclear TiOMn2+ Chromophore Anchored on Silica Nanoparticle Surface , 2014 .

[8]  P. Boyle,et al.  An unsupported metal hydroxide for the design of molecular μ-oxo bridged heterobimetallic complexes. , 2014, Chemical communications.

[9]  Leone Spiccia,et al.  A new direction in dye-sensitized solar cells redox mediator development: in situ fine-tuning of the cobalt(II)/(III) redox potential through Lewis base interactions. , 2012, Journal of the American Chemical Society.

[10]  A. Yamaguchi,et al.  Multielectron-transfer reactions at single Cu(II) centers embedded in polyoxotungstates driven by photo-induced metal-to-metal charge transfer from anchored Ce(III) to framework W(VI). , 2012, Chemical communications.

[11]  Han Sen Soo,et al.  EXAFS Spectroscopic Analysis of Heterobinuclear TiOMn Charge-Transfer Chromophore in Mesoporous Silica , 2011 .

[12]  Joseph M. Zadrozny,et al.  Slow magnetic relaxation and charge-transfer in cyano-bridged coordination clusters incorporating [Re(CN)(7)](3-/4-). , 2010, Inorganic chemistry.

[13]  C. Kubiak,et al.  High-spin ground states via electron delocalization in mixed-valence imidazolate-bridged divanadium complexes. , 2010, Nature chemistry.

[14]  H. Frei,et al.  Unusually Long Lifetime of Excited Charge-Transfer State of All-Inorganic Binuclear TiOMnII Unit Anchored on Silica Nanopore Surface , 2010 .

[15]  Christopher J. Chang,et al.  A molecular molybdenum-oxo catalyst for generating hydrogen from water , 2010, Nature.

[16]  H. Frei,et al.  Binuclear TiOMn charge-transfer chromophore in mesoporous silica. , 2009, Dalton transactions.

[17]  A. Okamoto,et al.  Anchored Oxo-Bridged Bimetallic Complexes, (SiO)3—Ti—O—Fe(corrole), on Silica Mesopores as Multi-Electron-Transfer Photosystems , 2008 .

[18]  Hongxian Han,et al.  Controlled Assembly of Hetero-binuclear Sites on Mesoporous Silica: Visible Light Charge-Transfer Units with Selectable Redox Properties , 2008 .

[19]  J. Long,et al.  A redox-switchable single-molecule magnet incorporating [Re(CN)7]3-. , 2008, Journal of the American Chemical Society.

[20]  G. Sheldrick A short history of SHELX. , 2008, Acta crystallographica. Section A, Foundations of crystallography.

[21]  H. Frei,et al.  Visible light absorption of binuclear TiOCoII charge-transfer unit assembled in mesoporous silica , 2007 .

[22]  S. Maria,et al.  Mixed Titanium–Hafnium Chloridometallate Complexes , 2007 .

[23]  H. Frei,et al.  Bimetallic redox sites for photochemical CO2 splitting in mesoporous silicate sieve , 2006 .

[24]  H. Frei,et al.  Photochemical CO2 splitting by metal-to-metal charge-transfer excitation in mesoporous ZrCu(I)-MCM-41 silicate sieve. , 2005, Journal of the American Chemical Society.

[25]  H. Schumann Spectroscopy, Molecular Structure, Electrochemistry, and Reactivity of Vanadium(IV,V) Imido Complexes of 5,7,12,14-Tetramethyldibenzo[b,i][1,4,8,11]tetraazacyclotetradecine , 1996 .

[26]  G. Geoffroy,et al.  Addition and cycloaddition reactions of the nucleophilic oxo and sulfido complexes [tmtaa]Ti=X (X=O, S; tmtaa = dianion of 7,16-dihydro-6,8,15,17-tetramethyldibenzo[b,i][1,4,8,11]tetraazacyclotetradecine) , 1992 .

[27]  V. Goedken,et al.  New Heterobinuclear μ-Oxo-Bridged Dimer Complexes: Synthesis, Characterization and Structural Studies of a Macrocyclic Titanyl Complex and its Adducts , 1988 .

[28]  V. Goedken,et al.  New heterobinuclear μ-oxo-bridged dimer complexes: synthesis, characterization and structural studies , 1986 .

[29]  P. Maccarthy,et al.  Novel approach to Job's method: an undergraduate experiment , 1986 .

[30]  E. Jäger Aminomethylen‐β‐dicarbonylverbindungen als Komplexliganden. V. Neue konjugiert‐ungesättigte Neutralkomplexe mit vierzehngliedrigen, makrozyklischen Liganden , 1969 .