Robust control with pole shifting via performance index modification

Robust controllers that ensure closed-loop eigenvalue placement are designed for linear systems with parametric uncertainties. By using an appropriate state weighting matrix choice and a relative stability degree, an LMI-based algorithm is proposed to provide guaranteed cost controllers that ensure (i) the closed-loop nominal eigenvalues shifting by a pre-specified amount (ii) a prescribed degree of stability for all system uncertainties of a given class. A certain level of closed-loop performance is also ensured by minimizing the associated guaranteed cost.

[1]  N. Nichols,et al.  Robust pole assignment in linear state feedback , 1985 .

[2]  Jorge M. Martin State space measures of robustness of pole locations for structured and unstructured perturbations , 1991 .

[3]  J. Willems Least squares stationary optimal control and the algebraic Riccati equation , 1971 .

[4]  Dimitri Peaucelle,et al.  Robust D stabilization of a polytope of matrices , 2002 .

[5]  Yau-Tarng Juang A fundamental multivariable robustness theorem for robust eigenvalue assignment , 1988 .

[6]  Etsujiro Shimemura,et al.  Determining quadratic weighting matrices to locate poles in a specified region , 1983, Autom..

[7]  Ian R. Petersen,et al.  Quadratic guaranteed cost control with robust pole placement in a disk , 1996 .

[8]  J. Medanic,et al.  Geometric properties and invariant manifolds of the Riccati equation , 1982 .

[9]  Denis Arzelier,et al.  Pole assignment of linear uncertain systems in a sector via a Lyapunov-type approach , 1993, IEEE Trans. Autom. Control..

[10]  O. I. Kosmidou,et al.  Robust-controller design for systems with large parameter variations , 1987 .

[11]  Sang Bong Kim,et al.  Pole assignment in a specified disk , 1987 .

[12]  P. Gahinet,et al.  H∞ design with pole placement constraints: an LMI approach , 1996, IEEE Trans. Autom. Control..

[13]  Pierre Apkarian,et al.  Robust pole placement in LMI regions , 1999, IEEE Trans. Autom. Control..

[14]  D. Gbaupe,et al.  Derivation of weighting matrices towards satisfying eigenvalue requirements , 1972 .

[15]  Denis Arzelier,et al.  An LMI Solution for Disk Pole Location with H2 Guaranteed Cost , 1995, Eur. J. Control.

[16]  Guo-Ping Liu,et al.  Robust pole assignment in descriptor linear systems via state feedback , 2001, ECC.

[17]  Robin J. Evans,et al.  Constrained pole-placement using transformation and LQ-design , 1987, Autom..

[18]  Martin Corless,et al.  A new class of stabilizing controllers for uncertain dynamical systems , 1982, CDC 1982.

[19]  E. Yaz Linear Matrix Inequalities In System And Control Theory , 1998, Proceedings of the IEEE.

[20]  Karl Johan Åström,et al.  Robustness of a design method based on assignment of poles and zeros , 1980 .

[21]  Germain Garcia,et al.  Pole assignment for uncertain systems in a specified disk by output feedback , 1996, Math. Control. Signals Syst..

[22]  B. Barmish Necessary and sufficient conditions for quadratic stabilizability of an uncertain system , 1985 .

[23]  Pascal Gahinet,et al.  H/sub /spl infin// design with pole placement constraints: an LMI approach , 1994, Proceedings of 1994 33rd IEEE Conference on Decision and Control.

[24]  M. Athans,et al.  Gain and phase margin for multiloop LQG regulators. [Linear-Quadratic-Gaussian theory] , 1977 .

[25]  Mehrdad Saif Optimal linear regulator pole-placement by weight selection , 1989 .

[26]  H. Abou-Kandil,et al.  Matrix Riccati Equations in Control and Systems Theory , 2003, IEEE Transactions on Automatic Control.

[27]  Dennis S. Bernstein,et al.  Mathematics of Control, Signals, and Systems Robust Stability and Performance via Fixed-order Dynamic Compensation with Guaranteed Cost Bounds* , 2022 .

[28]  P.K. Paul,et al.  Pole placement by performance criterion modification , 1989, Proceedings of the 32nd Midwest Symposium on Circuits and Systems,.

[29]  T. K. C. Peng,et al.  Adaptive Guaranteed Cost of Control of Systems with Uncertain Parameters , 1970 .

[30]  B. Anderson,et al.  Optimal control: linear quadratic methods , 1990 .

[31]  D. Bernstein,et al.  Controller design with regional pole constraints , 1992 .