Conditional convex orders and measurable martingale couplings

Strassen’s classical martingale coupling theorem states that two real-valued random variables are ordered in the convex (resp. increasing convex) stochastic order if and only if they admit a martingale (resp. submartingale) coupling. By analyzing topological properties of spaces of probability measures equipped with a Wasserstein metric and applying a measurable selection theorem, we prove a conditional version of this result for real-valued random variables conditioned on a random element taking values in a general measurable space. We also provide an analogue of the conditional martingale coupling theorem in the language of probability kernels and illustrate how this result can be applied in the analysis of pseudo-marginal Markov chain Monte Carlo algorithms.

[1]  M. Beiglbock,et al.  On a problem of optimal transport under marginal martingale constraints , 2012, 1208.1509.

[2]  C. Andrieu,et al.  The pseudo-marginal approach for efficient Monte Carlo computations , 2009, 0903.5480.

[3]  A. Müller,et al.  Comparison Methods for Stochastic Models and Risks , 2002 .

[4]  R. Szekli Stochastic Ordering and Dependence in Applied Probability , 1995 .

[5]  S. Caracciolo,et al.  Nonlocal Monte Carlo algorithm for self-avoiding walks with fixed endpoints , 1990 .

[6]  David Hobson,et al.  The maximum maximum of a martingale , 1998 .

[7]  H. Soner,et al.  Martingale optimal transport and robust hedging in continuous time , 2012, 1208.4922.

[8]  W. Whitt Uniform conditional stochastic order , 1980 .

[9]  H. Kellerer,et al.  Markov-Komposition und eine Anwendung auf Martingale , 1972 .

[10]  C. J. Himmelberg,et al.  On measurable relations , 1982 .

[11]  Ward Whitt,et al.  Uniform conditional variability ordering of probability distributions , 1985 .

[12]  P. Peskun,et al.  Optimum Monte-Carlo sampling using Markov chains , 1973 .

[13]  Ingram Olkin,et al.  Inequalities: Theory of Majorization and Its Application , 1979 .

[14]  L. Leskelä Stochastic Relations of Random Variables and Processes , 2008 .

[15]  F. Hirsch Peacocks and Associated Martingales, with Explicit Constructions , 2011 .

[16]  Gerry Leversha,et al.  Foundations of modern probability (2nd edn), by Olav Kallenberg. Pp. 638. £49 (hbk). 2002. ISBN 0 387 95313 2 (Springer-Verlag). , 2004, The Mathematical Gazette.

[17]  N. Bingham Probability Theory: An Analytic View , 2002 .

[18]  ON CONDITIONAL STOCHASTIC ORDERING OF DISTRIBUTIONS , 1991 .

[19]  David Hobson,et al.  ROBUST BOUNDS FOR FORWARD START OPTIONS , 2012 .

[20]  C. Villani Optimal Transport: Old and New , 2008 .

[21]  Christophe Andrieu,et al.  Establishing some order amongst exact approximations of MCMCs , 2014, 1404.6909.

[22]  L. Tierney A note on Metropolis-Hastings kernels for general state spaces , 1998 .

[23]  Hans Keiding,et al.  Stochastic Dominance and Conditional Expectation—An Insurance Theoretical Approach , 2002 .

[24]  C. Andrieu,et al.  Convergence properties of pseudo-marginal Markov chain Monte Carlo algorithms , 2012, 1210.1484.

[25]  V. Strassen The Existence of Probability Measures with Given Marginals , 1965 .

[26]  L. Ambrosio,et al.  Gradient Flows: In Metric Spaces and in the Space of Probability Measures , 2005 .

[27]  Mathias Beiglböck,et al.  Model-independent bounds for option prices—a mass transport approach , 2011, Finance Stochastics.

[28]  Nizar Touzi,et al.  A Stochastic Control Approach to No-Arbitrage Bounds Given Marginals, with an Application to Lookback Options , 2013, 1401.3921.

[29]  I. Olkin,et al.  Inequalities: Theory of Majorization and Its Applications , 1980 .

[30]  O. Kallenberg Foundations of Modern Probability , 2021, Probability Theory and Stochastic Modelling.

[31]  Antonietta Mira,et al.  AN EXTENSION OF PESKUN AND TIERNEY ORDERINGS TO CONTINUOUS TIME MARKOV CHAINS , 2008 .

[32]  Joaquin Fontbona,et al.  Measurability of optimal transportation and strong coupling of martingale measures , 2008, 0809.1111.

[33]  R. M. Shortt,et al.  Strassen's marginal problem in two or more dimensions , 1983 .

[34]  J. Shanthikumar,et al.  Multivariate Stochastic Orders , 2007 .

[35]  A version of Strassen’s Theorem for vector-valued measures , 1998 .

[36]  Shashi M. Srivastava,et al.  A Course on Borel Sets , 1998, Graduate texts in mathematics.

[37]  R. P. Kertz,et al.  Complete lattices of probability measures with applications to martingale theory , 2000 .

[38]  G. Lowther Fitting Martingales To Given Marginals , 2008, 0808.2319.