On the Size of Planarly Connected Crossing Graphs

We prove that if an n-vertex graph G can be drawn in the plane such that each pair of crossing edges is independent and there is a crossing-free edge that connects their endpoints, then G has O(n) edges. Graphs that admit such drawings are related to quasi-planar graphs and to maximal 1-planar and fan-planar graphs.

[1]  Vasilis Capoyleas,et al.  A turán-type theorem on chords of a convex polygon , 1992, J. Comb. Theory, Ser. B.

[2]  Michael Kaufmann,et al.  The Density of Fan-Planar Graphs , 2014, Electron. J. Comb..

[3]  János Pach,et al.  On grids in topological graphs , 2014, Comput. Geom..

[4]  János Pach,et al.  Research problems in discrete geometry , 2005 .

[5]  János Pach Notes on Geometric Graph Theory , 1990, Discrete and Computational Geometry.

[6]  Micha Sharir,et al.  Quasi-planar graphs have a linear number of edges , 1995, GD.

[7]  Gábor Tardos,et al.  On the maximum number of edges in quasi-planar graphs , 2007, J. Comb. Theory, Ser. A.

[8]  W. T. Tutte Toward a theory of crossing numbers , 1970 .

[9]  János Pach,et al.  Graphs drawn with few crossings per edge , 1997, Comb..

[10]  Csaba D. Tóth,et al.  Graphs That Admit Polyline Drawings with Few Crossing Angles , 2012, SIAM J. Discret. Math..

[11]  Ch. Chojnacki,et al.  Über wesentlich unplättbare Kurven im dreidimensionalen Raume , 1934 .

[12]  Eyal Ackerman On the Maximum Number of Edges in Topological Graphs with no Four Pairwise Crossing Edges , 2009, Discret. Comput. Geom..

[13]  Bartosz Walczak,et al.  New bounds on the maximum number of edges in k-quasi-planar graphs , 2015, Comput. Geom..

[14]  János Pach,et al.  Coloring kk-free intersection graphs of geometric objects in the plane , 2008, SCG '08.

[15]  Michael J. Pelsmajer,et al.  Removing even crossings , 2007, J. Comb. Theory, Ser. B.

[16]  János Pach,et al.  Applications of a New Separator Theorem for String Graphs , 2013, Combinatorics, Probability and Computing.

[17]  János Pach,et al.  Relaxing Planarity for Topological Graphs , 2002, JCDCG.