On the Size of Planarly Connected Crossing Graphs
暂无分享,去创建一个
[1] Vasilis Capoyleas,et al. A turán-type theorem on chords of a convex polygon , 1992, J. Comb. Theory, Ser. B.
[2] Michael Kaufmann,et al. The Density of Fan-Planar Graphs , 2014, Electron. J. Comb..
[3] János Pach,et al. On grids in topological graphs , 2014, Comput. Geom..
[4] János Pach,et al. Research problems in discrete geometry , 2005 .
[5] János Pach. Notes on Geometric Graph Theory , 1990, Discrete and Computational Geometry.
[6] Micha Sharir,et al. Quasi-planar graphs have a linear number of edges , 1995, GD.
[7] Gábor Tardos,et al. On the maximum number of edges in quasi-planar graphs , 2007, J. Comb. Theory, Ser. A.
[8] W. T. Tutte. Toward a theory of crossing numbers , 1970 .
[9] János Pach,et al. Graphs drawn with few crossings per edge , 1997, Comb..
[10] Csaba D. Tóth,et al. Graphs That Admit Polyline Drawings with Few Crossing Angles , 2012, SIAM J. Discret. Math..
[11] Ch. Chojnacki,et al. Über wesentlich unplättbare Kurven im dreidimensionalen Raume , 1934 .
[12] Eyal Ackerman. On the Maximum Number of Edges in Topological Graphs with no Four Pairwise Crossing Edges , 2009, Discret. Comput. Geom..
[13] Bartosz Walczak,et al. New bounds on the maximum number of edges in k-quasi-planar graphs , 2015, Comput. Geom..
[14] János Pach,et al. Coloring kk-free intersection graphs of geometric objects in the plane , 2008, SCG '08.
[15] Michael J. Pelsmajer,et al. Removing even crossings , 2007, J. Comb. Theory, Ser. B.
[16] János Pach,et al. Applications of a New Separator Theorem for String Graphs , 2013, Combinatorics, Probability and Computing.
[17] János Pach,et al. Relaxing Planarity for Topological Graphs , 2002, JCDCG.