AgBr-Ag-Bi2WO6 nanojunction system: A novel and efficient photocatalyst with double visible-light active components

[1]  Jie Ren,et al.  Nanocrystalline Fe/TiO2 Visible Photocatalyst with a Mesoporous Structure Prepared via a Nonhydrolytic Sol−Gel Route , 2007 .

[2]  Lisha Zhang,et al.  Bi2WO6 nano- and microstructures: shape control and associated visible-light-driven photocatalytic activities. , 2007, Small.

[3]  M. Gholami,et al.  Apatite-coated Ag/AgBr/TiO(2) visible-light photocatalyst for destruction of bacteria. , 2007, Journal of the American Chemical Society.

[4]  Lisha Zhang,et al.  Fabrication of flower-like Bi2WO6 superstructures as high performance visible-light driven photocatalysts , 2007 .

[5]  K. Pang,et al.  Removal of Pentachlorophenol by Adsorption on Magnetite-immobilized Chitin , 2007 .

[6]  B. Ohtani,et al.  Is methylene blue an appropriate substrate for a photocatalytic activity test? A study with visible-light responsive titania , 2006 .

[7]  Tomoki Akita,et al.  All-solid-state Z-scheme in CdS–Au–TiO2 three-component nanojunction system , 2006, Nature materials.

[8]  Shengwei Liu,et al.  Sonochemical synthesis of nanocrystallite Bi2O3 as a visible-light-driven photocatalyst , 2006 .

[9]  B. Kale,et al.  CdIn2S4 Nanotubes and “Marigold” Nanostructures: A Visible‐Light Photocatalyst , 2006 .

[10]  P. Tierno,et al.  Using electroless deposition for the preparation of micron sized polymer/metal core/shell particles and hollow metal spheres. , 2006, The journal of physical chemistry. B.

[11]  J. Qu,et al.  Ag/AgBr/TiO2 visible light photocatalyst for destruction of azodyes and bacteria. , 2006, The journal of physical chemistry. B.

[12]  Lisha Zhang,et al.  Preparation of Fenton reagent with H2O2 generated by solar light-illuminated nano-Cu2O/MWNTs composites , 2006 .

[13]  H. Fu,et al.  Visible-light-induced degradation of rhodamine B by nanosized Bi2WO6. , 2005, The journal of physical chemistry. B.

[14]  J Li,et al.  Photocatalytic degradation of azo dyes by nitrogen-doped TiO2 nanocatalysts. , 2005, Chemosphere.

[15]  H. Kim,et al.  Photocatalytic nanodiodes for visible-light photocatalysis. , 2005, Angewandte Chemie.

[16]  Prashant V Kamat,et al.  Charge separation and catalytic activity of Ag@TiO2 core-shell composite clusters under UV-irradiation. , 2005, Journal of the American Chemical Society.

[17]  Jiaguo Yu,et al.  Efficient visible-light-induced photocatalytic disinfection on sulfur-doped nanocrystalline titania. , 2005, Environmental science & technology.

[18]  Xiuwen Han,et al.  A mechanism for enhanced photocatalytic activity of silver-loaded titanium dioxide , 2004 .

[19]  Jinhua Ye,et al.  Efficient photocatalytic decomposition of organic contaminants over CaBi2O4 under visible-light irradiation. , 2004, Angewandte Chemie.

[20]  H. Kim,et al.  An undoped, single-phase oxide photocatalyst working under visible light. , 2004, Journal of the American Chemical Society.

[21]  E. Wolf,et al.  Catalysis with TiO2/gold nanocomposites. Effect of metal particle size on the Fermi level equilibration. , 2004, Journal of the American Chemical Society.

[22]  A. Yoshida,et al.  Photocatalytic Hydrogen Evolution from Water on Nanocomposites Incorporating Cadmium Sulfide into the Interlayer , 2002 .

[23]  P. Wong,et al.  Degradation of azo dye Procion Red MX-5B by photocatalytic oxidation. , 2002, Chemosphere.

[24]  Hironori Arakawa,et al.  Direct splitting of water under visible light irradiation with an oxide semiconductor photocatalyst , 2001, Nature.

[25]  R. Asahi,et al.  Visible-Light Photocatalysis in Nitrogen-Doped Titanium Oxides , 2001, Science.

[26]  Keiichi Tanaka,et al.  Photocatalytic degradation of commercial azo dyes , 2000 .

[27]  Jacqueline Belloni,et al.  Enhanced yield of photoinduced electrons in doped silver halide crystals , 1999, Nature.

[28]  A. Kudo,et al.  A Novel Aqueous Process for Preparation of Crystal Form-Controlled and Highly Crystalline BiVO4 Powder from Layered Vanadates at Room Temperature and Its Photocatalytic and Photophysical Properties , 1999 .

[29]  Kazunari Domen,et al.  Cu2O as a photocatalyst for overall water splitting under visible light irradiation , 1998 .

[30]  S. Hotchandani,et al.  Environmental Photochemistry on Semiconductor Surfaces. Visible Light Induced Degradation of a Textile Diazo Dye, Naphthol Blue Black, on TiO2 Nanoparticles , 1996 .

[31]  Prashant V. Kamat,et al.  Environmental Photochemistry on Semiconductor Surfaces: Photosensitized Degradation of a Textile Azo Dye, Acid Orange 7, on TiO2 Particles Using Visible Light , 1996 .

[32]  S. Martin,et al.  Environmental Applications of Semiconductor Photocatalysis , 1995 .

[33]  C. Minero,et al.  Heterogeneous Photocatalyzed Oxidation of Phenol, Cresols, and Fluorophenols in TiO2 Aqueous Suspensions. , 1994 .

[34]  N. Serpone,et al.  Photosensitive metal-organic systems : mechanistic principles and applications , 1993 .

[35]  W. Stickle,et al.  Handbook of X-Ray Photoelectron Spectroscopy , 1992 .

[36]  M. Fujihira,et al.  Heterogeneous photocatalytic oxidation of aromatic compounds on TiO2 , 1981, Nature.