State of the Journal
暂无分享,去创建一个
T year 2012 will mark the end of my term as Editor-in-Chief of the IEEE Transactions on Pattern Analysis and Machine Intelligence (TPAMI). I believe that we have made substantial progress on one of the core challenges that TPAMI faces, namely, the continued growth of machine learning. As I have mentioned, the IEEE does not have a journal whose focus is modern machine learning methods, such as SVMs. Yet many papers in this area are submitted to TPAMI. One factor is that machine learning falls within TPAMI’s scope statement, but perhaps a more important reason is the journal’s excellence in computer vision, an area where machine learning is having a substantial and increasing impact. There is no possibility for TPAMI to ignore this area and continue to thrive, so the journal out of necessity must rise to the challenge of becoming a leading publication in machine learning. My predecessor David Kriegman saw this development clearly, and responded by appointing Zoubin Gharamani, a famous machine learning expert, as an Associate Editor in Chief (AEIC). Zoubin served his complete 4-year term with distinction, and has now moved up to the TPAMI Advisory Board. Over the last few years the number of machine learning submissions has continued to grow substantially, and we have clearly needed additional help. Machine learning is an area where TPAMI faces some distinct challenges. TPAMI has not published a body of truly fundamental papers in machine learning that is comparable to our accomplishments in computer vision, biometrics, or other areas that are closer to the journal’s traditional strengths. As a result, many of the submissions we receive have fallen short of TPAMI’s high standards. This has posed a diffi cult problem because it is challenging to attract top-notch researchers in machine learning as reviewers or AEs when most of the papers they handle must be rejected, and many would, in all honesty, never be submitted to a major machine learning journal. My primary focus throughout my term as EIC has been to address this situation, and I am pleased to report signifi cant progress. As you know, Max Welling joined us as an AEIC. I am happy to announce that Neil Lawrence has also agreed to serve as an AEIC. Neil has served with distinction as an AE for TPAMI, is on the board of JMLR, and will be program chair for AISTATS. (I note with amusement that Max Welling also held these three roles, which suggests a simple automatic classifi er to detect TPAMI AEICs in machine learning!) Neil has published two books in machine learning, and is primarily interested in probabilistic models. With both Max and Neil on board as AEICs we now have suffi cient manpower to address our main challenges. We have raised the bar for machine learning papers to be sent out for review by rejecting papers early on that would have eventually been rejected anyway. Hopefully, the effects of this will be clearly felt by everyone involved in the reviewing process, and the authors of high-quality submissions will benefi t from the increased availability of reviewing resources. Coupled with this effort, Max and Neil are developing a number of high quality special issues on important topics in machine learning (see the call for papers on page 207 of this issue for the fi rst such initiative). The fi eld of machine learning has a major advantage in its commitment to Open Access, which is an issue that the IEEE (along with most publishers) is struggling with. The top journal in machine learning (JMLR) is Open Access, while perhaps the best conference (NIPS) is making its proceedings available in arXiv. This has enormous benefi ts to the machine learning community. I personally believe that TPAMI will, over time, end up moving to an Open Access model, and I will hazard a guess that this will be one of the main challenges that the next EIC will face. On the operational side, the reviewing process on the whole is fairly timely, although exceptions do occur for a variety of reasons, and I want to yet again apologize to the authors whose papers get stalled in the process for one reason or another. To provide some numbers, there were 999 submissions in 2010 (I must confess I was really hoping for one more to come in at the very end). We are on track for a similar number in 2011, with 795 received as I write. The acceptance rate for 2010 submissions so far is 14 percent, though it is important to realize this does not imply 86 percent have been rejected, since a number of such papers are still undergoing revisions. The typical time from submission to final decision is about six months, which is unchanged from last year. Approximately 30 percent of submissions are rejected without review; while this is unpleasant for the authors, it saves them time from having their paper rejected at the end of the full review process and lets them quickly revise their papers for submission to a more appropriate journal. I am happy to report that the issue with the print queue is now under control, and papers now typically appear in print approximately 5.5 months after the fi nal material is uploaded. Short papers are generally published even faster, and authors are urged to consider this option. Of course, papers continue to be published online quite quickly after acceptance. On the topic of online publication, TPAMI is now available in the IEEE Computer Society’s new OnlinePlus format, at a signifi cant discount to the print subscription price. Over time the number of subscribers to the printed journal is falling, and readers who wish to see this format continue should be sure to sign up for print subscriptions.