Theoretical study of the adsorption of the Butanol isomers in H-ZSM-5

The adsorption of the four butanol isomers (1-BuOH, i-BuOH, 2-BuOH, and t-BuOH) at the Al12−O24(H)−Si12 intersection site in H-ZSM-5 is investigated using the periodic [DFT-D] approach in which a damped interatomic potential (D) is included within the periodic density functional theory (pbcDFT) calculations to account for dispersive van der Waals (vdW) interactions. Both the pbcDFT and pbc[DFT-D] methods yield largely similar results for the geometry of adsorbed complexes. The pbc[DFT-D] adsorption energies of the butanols are similar to those obtained using the pbcDFT with an add-on single-point dispersion-energy correction (pbcDFT + D). The adsorption strength of butanols decreases in the following order: 1-BuOH (−160 to −164 kJ mol−1) > 2-BuOH (−155 to −157 kJ mol−1) > t-BuOH (−151 kJ mol−1) > i-BuOH (−147 kJ mol−1). On the basis of a partial Hessian vibration analysis of the most stable physisorbed and chemisorbed complexes, reported experimental infrared (IR) spectra could be interpreted by assuming ...

[1]  V. Santen Quantum-chemistry of zeolite acidity , 1997 .

[2]  J. Hutter,et al.  Ab initio molecular dynamics simulation of methanol adsorbed in chabazite , 1997 .

[3]  S. Izmailova,et al.  Calorimetric and IR-Spectroscopic Study of Methanol Adsorption on Zeolites , 1994 .

[4]  A. Corma,et al.  Synthesis of transportation fuels from biomass: chemistry, catalysts, and engineering. , 2006, Chemical reviews.

[5]  John Meurig Thomas,et al.  Influence of pore confinement on the catalytic dehydration of isobutyl alcohol on H-ZSM-5 , 1990 .

[6]  R. Taft,et al.  Gas phase basicities and relative proton affinities of compounds between water and ammonia from pulsed ion cyclotron resonance thermal equilibriums measurements , 1977 .

[7]  K. Zamaraev,et al.  Dehydration of n-Butanol on Zeolite H-ZSM-5 and Amorphous Aluminosilicate: Detailed Mechanistic Study and the Effect of Pore Confinement , 1994 .

[8]  R. Gorte,et al.  The influence of oxonium ion and carbenium ion stabilities on the Alcohol/H-ZSM-5 interaction☆ , 1986 .

[9]  P. P. Ewald Die Berechnung optischer und elektrostatischer Gitterpotentiale , 1921 .

[10]  John Meurig Thomas,et al.  Kinetic studies of catalytic dehydration of tert-butanol on zeolite NaH-ZSM-5 , 1991 .

[11]  J. Sauer,et al.  Protonation of water clusters in the cavities of acidic zeolites: (H2O)n.H-chabazite, n = 1-4. , 2009, Physical chemistry chemical physics : PCCP.

[12]  Joachim Sauer,et al.  Aluminium siting in the ZSM-5 framework by combination of high resolution 27Al NMR and DFT/MM calculations. , 2009, Physical chemistry chemical physics : PCCP.

[13]  G. Kresse,et al.  From ultrasoft pseudopotentials to the projector augmented-wave method , 1999 .

[14]  Stefan Grimme,et al.  Semiempirical GGA‐type density functional constructed with a long‐range dispersion correction , 2006, J. Comput. Chem..

[15]  Blöchl,et al.  Projector augmented-wave method. , 1994, Physical review. B, Condensed matter.

[16]  A. Corma,et al.  Chemical routes for the transformation of biomass into chemicals. , 2007, Chemical reviews.

[17]  G. Kramer,et al.  Reactivity Theory of Zeolitic Broensted Acidic Sites , 1995 .

[18]  V. Santen,et al.  (A,B,C) triplet of infrared OH bands of zeolitic H-complexes , 1995 .

[19]  John Meurig Thomas,et al.  Structural and Mechanistic Aspects of the Dehydration of Isomeric Butyl Alcohols over Porous Aluminosilicate Acid Catalysts , 1996 .

[20]  J. Sauer,et al.  Interaction of methanol with Broensted acid sites of zeolite catalysts: an ab initio study , 1995 .

[21]  Berend Smit,et al.  Molecular simulations of zeolites: adsorption, diffusion, and shape selectivity. , 2008, Chemical reviews.

[22]  J. Čejka,et al.  Control of Al distribution in ZSM-5 by conditions of zeolite synthesis. , 2003, Chemical communications.

[23]  Joseph V. Smith,et al.  Topochemistry of zeolites and related materials. 1. Topology and geometry , 1988 .

[24]  G. Henkelman,et al.  A fast and robust algorithm for Bader decomposition of charge density , 2006 .

[25]  Kresse,et al.  Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. , 1996, Physical review. B, Condensed matter.

[26]  M. Payne,et al.  Methanol Adsorption in ZeolitesA First-Principles Study , 1996 .

[27]  E. P. Hunter,et al.  Evaluated Gas Phase Basicities and Proton Affinities of Molecules: An Update , 1998 .

[28]  Hafner,et al.  Ab initio molecular-dynamics simulation of the liquid-metal-amorphous-semiconductor transition in germanium. , 1994, Physical review. B, Condensed matter.

[29]  E. Derouane Zeolites as solid solvents , 1998 .

[30]  G. Sastre,et al.  Computational Study of Brønsted Acidity of Faujasite. Effect of the Al Content on the Infrared OH Stretching Frequencies , 2008 .

[31]  M. Payne,et al.  Role of the Zeolitic Environment in Catalytic Activation of Methanol , 1999 .

[32]  L. A. Clark,et al.  Computational elucidation of the transition state shape selectivity phenomenon. , 2004, Journal of the American Chemical Society.

[33]  Kiyoyuki Terakura,et al.  Dynamical observation of the catalytic activation of methanol in zeolites , 1998 .

[34]  John Meurig Thomas,et al.  Mechanistic studies of the catalytic dehydration of isobutyl alcohol on NaH-ZSM-5 , 1990 .

[35]  J. Fraissard,et al.  Hydrogen Bonding of Methanol with Bridged OH Groups of Zeolites: Ab Initio Calculation, 1H NMR and FTIR Studies , 1998 .

[36]  Marie-Françoise Reyniers,et al.  Theoretical study of the adsorption of C1-C4 primary alcohols in H-ZSM-5. , 2010, Physical chemistry chemical physics : PCCP.

[37]  Joachim Sauer,et al.  Theoretical Study of van der Waals Complexes at Surface Sites in Comparison with the Experiment , 1994 .

[38]  John Meurig Thomas,et al.  Mechanistic study of sec-butyl alcohol dehydration on zeolite H-ZSM-5 and amorphous aluminosilicate , 1994 .

[39]  J. Klinowski,et al.  Adsorption complexes of methanol on zeolite ZSM-5 , 1990 .

[40]  G. Spoto,et al.  Effect of aluminium distribution in the framework of ZSM-5 on hydrocarbon transformation. Cracking of 1-butene , 2008 .

[41]  J. Sauer,et al.  Acidity Differences between Inorganic Solids Induced by Their Framework Structure. A Combined Quantum Mechanics/Molecular Mechanics ab Initio Study on Zeolites , 1998 .

[42]  S. Blaszkowski,et al.  Density functional theory calculations of the activation of methanol by a Bronsted zeolitic proton , 1995 .

[43]  C. Catlow,et al.  Siting of AI and bridging hydroxyl groups in ZSM-5: A computer simulation study , 1992 .

[44]  F. Benoit,et al.  Predictive value of proton affinity. Ionization energy correlations involving oxygenated molecules , 1977 .

[45]  J. Sauer,et al.  Ab initio molecular dynamics simulation of methanol interacting with acidic zeolites of different framework structure , 2000 .

[46]  M. Sierka,et al.  Coordination and siting of Cu+ ions in ZSM-5: A combined quantum mechanics/interatomic potential function study , 1999 .

[47]  P. Mayer,et al.  Proton Affinities of Primary Alkanols: An Appraisal of the Kinetic Method , 1999 .

[48]  J. Pau,et al.  Mechanisms of ionic reactions in the gas phase. Displacement reactions at carbonyl carbon , 1978 .

[49]  Burke,et al.  Generalized Gradient Approximation Made Simple. , 1996, Physical review letters.

[50]  G. Kresse,et al.  Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set , 1996 .

[51]  Jumras Limtrakul,et al.  Theoretical study of modes of adsorption of water dimer on H-ZSM-5 and H-Faujasite zeolites. , 2005, The journal of physical chemistry. B.

[52]  Avelino Corma,et al.  Synergies between bio- and oil refineries for the production of fuels from biomass. , 2007, Angewandte Chemie.

[53]  J. Nováková,et al.  Reactivity of surface species on zeolites in methanol conversion , 1990 .

[54]  J. Sauer,et al.  Quantum chemical modeling of zeolite-catalyzed methylation reactions: toward chemical accuracy for barriers. , 2009, Journal of the American Chemical Society.

[55]  C. Catlow,et al.  A computational study of the adsorption of the isomers of butanol on silicalite and H-ZSM-5 , 1994, Proceedings of the Royal Society of London. Series A: Mathematical and Physical Sciences.

[56]  R. Gorte,et al.  An infrared spectroscopy study of simple alcohols adsorbed on H-ZSM-5 , 1987 .

[57]  M. Barr,et al.  Ab initio quantum chemical calculations of aluminum substitution in zeolite ZSM-5 , 1991 .

[58]  Joachim Sauer,et al.  Application of semiempirical long‐range dispersion corrections to periodic systems in density functional theory , 2008, J. Comput. Chem..

[59]  L. Curtiss,et al.  Ab initio molecular orbital cluster studies of the zeolite ZSM-5. 1. Proton affinities , 1993 .

[60]  Hafner,et al.  Ab initio molecular dynamics for open-shell transition metals. , 1993, Physical review. B, Condensed matter.

[61]  R. Gorte,et al.  Calorimetric Study of Alcohol and Nitrile Adsorption Complexes in H-ZSM-5 , 1997 .