Analysis of CMOS Photodiodes. I. Quantum efficiency

An improved one-dimensional (1-D) analysis of the CMOS photodiode has been derived in which the effect of the substrate, which forms a high-low junction with the epitaxial layer, has been included. The analytical solution was verified with numerical simulations based on parameters extracted from a standard 0.35 /spl mu/m CMOS process. Two empirical parameters are suggested to offset the unavoidable inaccuracies in the extracted parameter values. The derived semiempirical expression exhibits a good agreement with the measured spectral response. In Part II of this paper, a three-dimensional (3-D) analysis of lateral photoresponse in CMOS photodiode arrays is presented along with an empirical modeling method utilizing test linear photodiode arrays.

[1]  J. Shappir,et al.  The response of small photovoltaic detectors to uniform radiation , 1977, IEEE Transactions on Electron Devices.

[2]  M. H. Crowell,et al.  The silicon diode array camera tube , 1969 .

[3]  H. Holloway,et al.  Collection efficiency and crosstalk in closely spaced photodiode arrays , 1986 .

[4]  H. Holloway,et al.  Peripheral photoresponse of a p–n junction , 1983 .

[5]  D. H. Seib,et al.  Carrier diffusion degradation of modulation transfer function in charge coupled imagers , 1974 .

[6]  S. Kirkpatrick Modeling diffusion and collection of charge from ionizing radiation in silicon devices , 1979, IEEE Transactions on Electron Devices.

[7]  I. Kidron,et al.  Three-dimensional analytical model for photovoltaic detector arrays , 1986, 1986 International Electron Devices Meeting.

[8]  Richard Hornsey,et al.  Correction to "Analysis of CMOS photodiodes-part II: lateral photoresponse" , 2003 .

[9]  Samuel E. Schacham,et al.  Three‐dimensional excess carrier distribution in semiconductor imaging arrays , 1988 .

[10]  Eric R. Fossum,et al.  CMOS image sensors: electronic camera on a chip , 1995, Proceedings of International Electron Devices Meeting.

[11]  F. Van de Wiele,et al.  Photodiode quantum efficiency , 1976 .

[12]  E.T. Nelson,et al.  Steady-state photocarrier collection in silicon imaging devices , 1983, IEEE Transactions on Electron Devices.

[13]  D. Robinson,et al.  A method for improving the spatial resolution of frontside-illuminated CCD's , 1981, IEEE Transactions on Electron Devices.

[14]  R. Matthias,et al.  Work-life differences and outcomes for agency and consumer-directed home-care workers. , 2004, The Gerontologist.

[15]  J. Hauser,et al.  Minority carrier reflecting properties of semiconductor high-low junctions , 1975 .

[16]  D. Lynch,et al.  Handbook of Optical Constants of Solids , 1985 .

[17]  R. Hornsey,et al.  Photoresponse of photodiode arrays for solid-state image sensors , 2000 .

[18]  T.I. Kamins,et al.  Photosensing arrays with improved spatial resolution , 1978, IEEE Transactions on Electron Devices.

[19]  I. Kidron,et al.  Three-dimensional analytical simulation of self- and cross-responsivities of photovoltaic detector arrays , 1987, IEEE Transactions on Electron Devices.

[20]  H. Holloway,et al.  Diffusion‐limited saturation current of a finite p‐n junction , 1984 .

[21]  H. Baltes,et al.  High accuracy modeling of photodiode quantum efficiency. , 1989, Applied optics.

[22]  Richard Hornsey,et al.  Analysis of CMOS Photodiodes. II. Lateral photoresponse , 2003 .

[23]  L. M. Sander Exact solution for the peripheral photoresponse of a p‐n junction , 1985 .

[24]  M. H. Crowell,et al.  The effect of a resistive sea on the performance of a silicon diode array camera tube , 1968 .

[25]  H. Holloway,et al.  Theory of lateral‐collection photodiodes , 1978 .

[26]  F. C. Eliot Geometric design of linear array detectors , 1974 .

[27]  H. Holloway,et al.  Peripheral photoresponse of a large p‐n junction in a thick semiconductor , 1984 .

[28]  Hon-Sum Philip Wong,et al.  Technology and device scaling considerations for CMOS imagers , 1996 .

[29]  Timothy Diamond,et al.  Making Gray Gold: Narratives of Nursing Home Care , 1992 .