Printable Ultrathin Metal Oxide Semiconductor-Based Conformal Biosensors.

Conformal bioelectronics enable wearable, noninvasive, and health-monitoring platforms. We demonstrate a simple and straightforward method for producing thin, sensitive In2O3-based conformal biosensors based on field-effect transistors using facile solution-based processing. One-step coating via aqueous In2O3 solution resulted in ultrathin (3.5 nm), high-density, uniform films over large areas. Conformal In2O3-based biosensors on ultrathin polyimide films displayed good device performance, low mechanical stress, and highly conformal contact determined using polydimethylsiloxane artificial skin having complex curvilinear surfaces or an artificial eye. Immobilized In2O3 field-effect transistors with self-assembled monolayers of NH2-terminated silanes functioned as pH sensors. Functionalization with glucose oxidase enabled d-glucose detection at physiologically relevant levels. The conformal ultrathin field-effect transistor biosensors developed here offer new opportunities for future wearable human technologies.

[1]  Piet Bergveld,et al.  Thirty years of ISFETOLOGY ☆: What happened in the past 30 years and what may happen in the next 30 years , 2003 .

[2]  Young Bum Lee,et al.  Stretchable Heater Using Ligand-Exchanged Silver Nanowire Nanocomposite for Wearable Articular Thermotherapy. , 2015, ACS nano.

[3]  Yi Lu,et al.  Using personal glucose meters and functional DNA sensors to quantify a variety of analytical targets. , 2011, Nature chemistry.

[4]  Woon-Hong Yeo,et al.  Epidermal Differential Impedance Sensor for Conformal Skin Hydration Monitoring , 2012, Biointerphases.

[5]  Ali Khademhosseini,et al.  Patient-Inspired Engineering and Nanotechnology. , 2015, ACS nano.

[6]  K. Banerjee,et al.  MoS₂ field-effect transistor for next-generation label-free biosensors. , 2014, ACS nano.

[7]  Dong Lim Kim,et al.  Simultaneous modification of pyrolysis and densification for low-temperature solution-processed flexible oxide thin-film transistors , 2012 .

[8]  Fen Xu,et al.  Glucose biosensor based on electrodeposition of platinum nanoparticles onto carbon nanotubes and immobilizing enzyme with chitosan-SiO(2) sol-gel. , 2008, Biosensors & bioelectronics.

[9]  J. Janata,et al.  pH-based enzyme potentiometric sensors. Part 2. Glucose-sensitive field effect transistor. , 1985, Analytical chemistry.

[10]  Y. Rim,et al.  Low-Impurity High-Performance Solution-Processed Metal Oxide Semiconductors via a Facile Redox Reaction , 2015 .

[11]  Jonathan C. Claussen,et al.  Nanostructuring Platinum Nanoparticles on Multilayered Graphene Petal Nanosheets for Electrochemical Biosensing , 2012 .

[12]  V. Maheshwari,et al.  High-Resolution Thin-Film Device to Sense Texture by Touch , 2006, Science.

[13]  Sangsig Kim,et al.  Stable Bending Performance of Flexible Organic Light-Emitting Diodes Using IZO Anodes , 2013, Scientific Reports.

[14]  Yang Yang,et al.  Boost Up Mobility of Solution‐Processed Metal Oxide Thin‐Film Transistors via Confining Structure on Electron Pathways , 2014, Advanced materials.

[15]  Ashutosh Tiwari,et al.  A review of recent advances in nonenzymatic glucose sensors. , 2014, Materials science & engineering. C, Materials for biological applications.

[16]  Wei Wang,et al.  The fracture of brittle thin films on compliant substrates in flexible displays , 2002 .

[17]  Benjamin C. K. Tee,et al.  Highly sensitive flexible pressure sensors with microstructured rubber dielectric layers. , 2010, Nature materials.

[18]  T. Neithercott The future is near. 14 diabetes products suggest big things to come. , 2015, Diabetes forecast.

[19]  Youngjin Jeong,et al.  Highly Sensitive and Multimodal All‐Carbon Skin Sensors Capable of Simultaneously Detecting Tactile and Biological Stimuli , 2015, Advanced materials.

[20]  Sang-Gook Kim,et al.  Extremely Elastic Wearable Carbon Nanotube Fiber Strain Sensor for Monitoring of Human Motion. , 2015, ACS nano.

[21]  C. Li,et al.  Chemical gating of In2O3 nanowires by organic and biomolecules , 2003 .

[22]  T. Someya,et al.  A Rubberlike Stretchable Active Matrix Using Elastic Conductors , 2008, Science.

[23]  Justin A. Blanco,et al.  Dissolvable films of silk fibroin for ultrathin conformal bio-integrated electronics. , 2010, Nature materials.

[24]  Takao Someya,et al.  A large-area, flexible pressure sensor matrix with organic field-effect transistors for artificial skin applications. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[25]  A. Star,et al.  Carbon Nanotube Field‐Effect‐Transistor‐Based Biosensors , 2007 .

[26]  P. Weiss,et al.  Scanning electron microscopy of nanoscale chemical patterns. , 2007, ACS nano.

[27]  David B. Grayden,et al.  Heating of the Eye by a Retinal Prosthesis: Modeling, Cadaver and In Vivo Study , 2012, IEEE Transactions on Biomedical Engineering.

[28]  A. Turner,et al.  Glucose oxidase: an ideal enzyme , 1992 .

[29]  Yang Yang,et al.  Fabrication of High-Performance Ultrathin In2O3 Film Field-Effect Transistors and Biosensors Using Chemical Lift-Off Lithography. , 2015, ACS nano.

[30]  Raeed H. Chowdhury,et al.  Epidermal Electronics , 2011, Science.

[31]  Joseph R Lakowicz,et al.  Ophthalmic glucose sensing: a novel monosaccharide sensing disposable and colorless contact lens. , 2004, The Analyst.

[32]  N. Lee,et al.  Stretchable, Transparent, Ultrasensitive, and Patchable Strain Sensor for Human-Machine Interfaces Comprising a Nanohybrid of Carbon Nanotubes and Conductive Elastomers. , 2015, ACS nano.

[33]  Yong Ju Park,et al.  Graphene-based conformal devices. , 2014, ACS nano.

[34]  S. Bose,et al.  Recent advances in graphene-based biosensors. , 2011, Biosensors & bioelectronics.

[35]  Andrew G. Gillies,et al.  Carbon nanotube active-matrix backplanes for conformal electronics and sensors. , 2011, Nano letters.

[36]  Muhammad A. Alam,et al.  Screening-limited response of nanobiosensors. , 2007, Nano letters.

[37]  Joseph Wang,et al.  Wearable Electrochemical Sensors and Biosensors: A Review , 2013 .

[38]  P. Weiss,et al.  Hybrid strategies in nanolithography , 2010 .

[39]  Sangsik Park,et al.  Sensors: Highly Sensitive and Multimodal All‐Carbon Skin Sensors Capable of Simultaneously Detecting Tactile and Biological Stimuli (Adv. Mater. 28/2015) , 2015 .

[40]  Rusen Yang,et al.  Mechanism and optimization of pH sensing using SnO2 nanobelt field effect transistors. , 2008, Nano letters.

[41]  G. Whitesides,et al.  Direct measurement of interfacial interactions between semispherical lenses and flat sheets of poly(dimethylsiloxane) and their chemical derivatives , 1991 .

[42]  Adele Sassella,et al.  Regioregular polythiophene field-effect transistors employed as chemical sensors , 2003 .

[43]  N. Jaffrezic‐Renault,et al.  Enzyme biosensors based on ion-selective field-effect transistors. , 2006, Analytica chimica acta.

[44]  Yonggang Huang,et al.  Materials and Mechanics for Stretchable Electronics , 2010, Science.

[45]  S. Chua,et al.  A mechanical assessment of flexible optoelectronic devices , 2001 .

[46]  Zhibin Yu,et al.  User-interactive electronic skin for instantaneous pressure visualization. , 2013, Nature materials.

[47]  Nae-Eung Lee,et al.  Transparent Stretchable Self-Powered Patchable Sensor Platform with Ultrasensitive Recognition of Human Activities. , 2015, ACS nano.

[48]  R M Hill,et al.  Human tear glucose. , 1982, Investigative ophthalmology & visual science.

[49]  Chang Liu,et al.  A review of carbon nanotube- and graphene-based flexible thin-film transistors. , 2013, Small.

[50]  Benjamin C. K. Tee,et al.  25th Anniversary Article: The Evolution of Electronic Skin (E‐Skin): A Brief History, Design Considerations, and Recent Progress , 2013, Advanced materials.

[51]  A. Vallée-Bélisle,et al.  General Strategy to Introduce pH-Induced Allostery in DNA-Based Receptors to Achieve Controlled Release of Ligands , 2015, Nano letters.

[52]  J. Janata,et al.  pH-based enzyme potentiometric sensors. Part 1. Theory. , 1985, Analytical chemistry.

[53]  Minjeong Ha,et al.  Triboelectric generators and sensors for self-powered wearable electronics. , 2015, ACS nano.

[54]  T. Hayek,et al.  Macrophage NADPH oxidase activation, impaired cholesterol fluxes, and increased cholesterol biosynthesis in diabetic mice: a stimulatory role for D-glucose. , 2007, Atherosclerosis.

[55]  C. Lieber,et al.  Nanowire Nanosensors for Highly Sensitive and Selective Detection of Biological and Chemical Species , 2001, Science.

[56]  Jong-Hyun Ahn,et al.  Load‐Controlled Roll Transfer of Oxide Transistors for Stretchable Electronics , 2013 .

[57]  Yung-Hui Yeh,et al.  Effects of Mechanical Strains on the Characteristics of Top-Gate Staggered a-IGZO Thin-Film Transistors Fabricated on Polyimide-Based Nanocomposite Substrates , 2012, IEEE Transactions on Electron Devices.

[58]  Gerhard Troster,et al.  Flexible In–Ga–Zn–O Thin-Film Transistors on Elastomeric Substrate Bent to 2.3% Strain , 2015, IEEE Electron Device Letters.

[59]  T. Someya,et al.  Conformable, flexible, large-area networks of pressure and thermal sensors with organic transistor active matrixes. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[60]  Yit‐Tsong Chen,et al.  Silicon nanowire field-effect transistor-based biosensors for biomedical diagnosis and cellular recording investigation , 2011 .

[61]  Andrew G. Gillies,et al.  Nanowire active-matrix circuitry for low-voltage macroscale artificial skin. , 2010, Nature materials.

[62]  Tae Yun Kim,et al.  Nanopatterned textile-based wearable triboelectric nanogenerator. , 2015, ACS nano.

[63]  K. Banerjee,et al.  Correction to MoS2 Field-Effect Transistor for Next-Generation Label-Free Biosensors , 2014 .