Cancer stem cell marker expression in hepatocellular carcinoma and liver metastases is not sufficient as single prognostic parameter.

[1]  Shi-wang Li,et al.  Expression and clinical significance of stem cell marker CD133 in human neuroblastoma , 2008, World journal of pediatrics : WJP.

[2]  P. Schirmacher,et al.  Autocrine insulin‐like growth factor‐II stimulation of tumor cell migration is a progression step in human hepatocarcinogenesis , 2008, Hepatology.

[3]  Ian A. White,et al.  CD133 expression is not restricted to stem cells, and both CD133+ and CD133- metastatic colon cancer cells initiate tumors. , 2008, The Journal of clinical investigation.

[4]  D. Gisselsson,et al.  Glial Progenitor-Like Phenotype in Low-Grade Glioma and Enhanced CD133-Expression and Neuronal Lineage Differentiation Potential in High-Grade Glioma , 2008, PloS one.

[5]  S. Natsugoe,et al.  CD133 expression is correlated with lymph node metastasis and vascular endothelial growth factor-C expression in pancreatic cancer , 2008, British Journal of Cancer.

[6]  E. Hurt,et al.  CD44+CD24− prostate cells are early cancer progenitor/stem cells that provide a model for patients with poor prognosis , 2008, British Journal of Cancer.

[7]  A. Molven,et al.  Expression of the "stem cell marker" CD133 in pancreas and pancreatic ductal adenocarcinomas , 2008, BMC Cancer.

[8]  C. D. Salcido,et al.  Brca1 breast tumors contain distinct CD44+/CD24- and CD133+ cells with cancer stem cell characteristics , 2008, Breast Cancer Research.

[9]  P. Lichter,et al.  Stem Cell Marker CD133 Affects Clinical Outcome in Glioma Patients , 2008, Clinical Cancer Research.

[10]  C. Heeschen,et al.  Distinct populations of cancer stem cells determine tumor growth and metastatic activity in human pancreatic cancer. , 2007, Cell stem cell.

[11]  Michael F. Clarke,et al.  Phenotypic characterization of human colorectal cancer stem cells , 2007, Proceedings of the National Academy of Sciences.

[12]  I. Ng,et al.  Identification and characterization of tumorigenic liver cancer stem/progenitor cells. , 2007, Gastroenterology.

[13]  Jianren Gu,et al.  CD133 positive hepatocellular carcinoma cells possess high capacity for tumorigenicity , 2007, International journal of cancer.

[14]  M. Clarke,et al.  Cancer stem cells: models and concepts. , 2007, Annual review of medicine.

[15]  J. Dick,et al.  A human colon cancer cell capable of initiating tumour growth in immunodeficient mice , 2007, Nature.

[16]  L. Ricci-Vitiani,et al.  Identification and expansion of human colon-cancer-initiating cells , 2007, Nature.

[17]  Mark W. Dewhirst,et al.  Glioma stem cells promote radioresistance by preferential activation of the DNA damage response , 2006, Nature.

[18]  Irving L Weissman,et al.  Cancer stem cells--perspectives on current status and future directions: AACR Workshop on cancer stem cells. , 2006, Cancer research.

[19]  M. Büchler,et al.  Active leukocyte crawling in microvessels assessed by digital time-lapse intravital microscopy. , 2006, The Journal of surgical research.

[20]  H. Li,et al.  Highly purified CD44+ prostate cancer cells from xenograft human tumors are enriched in tumorigenic and metastatic progenitor cells , 2006, Oncogene.

[21]  N. Maitland,et al.  Prospective identification of tumorigenic prostate cancer stem cells. , 2005, Cancer research.

[22]  P. Dalerba,et al.  Identification of pancreatic cancer stem cells. , 2006, Cancer research.

[23]  J. Dick,et al.  Cancer stem cells: lessons from leukemia. , 2005, Trends in cell biology.

[24]  T. Jacks,et al.  Identification of Bronchioalveolar Stem Cells in Normal Lung and Lung Cancer , 2005, Cell.

[25]  J. Ferlay,et al.  Global Cancer Statistics, 2002 , 2005, CA: a cancer journal for clinicians.

[26]  James R. Goldenring,et al.  Gastric Cancer Originating from Bone Marrow-Derived Cells , 2004, Science.

[27]  R. Henkelman,et al.  Identification of human brain tumour initiating cells , 2004, Nature.

[28]  P. Dirks,et al.  Cancer stem cells in nervous system tumors , 2004, Oncogene.

[29]  L. Qiu,et al.  [The expression of CD133 in acute leukemia and its clinical significance]. , 2004, Zhonghua xue ye xue za zhi = Zhonghua xueyexue zazhi.

[30]  P. Friedl,et al.  Tumour-cell invasion and migration: diversity and escape mechanisms , 2003, Nature Reviews Cancer.

[31]  S. Morrison,et al.  Prospective identification of tumorigenic breast cancer cells , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[32]  J. Bischoff,et al.  AC133-2, a Novel Isoform of Human AC133 Stem Cell Antigen* 210 , 2002, The Journal of Biological Chemistry.

[33]  R. Warnke,et al.  A novel five-transmembrane hematopoietic stem cell antigen: isolation, characterization, and molecular cloning. , 1997, Blood.

[34]  J. Dick,et al.  Human acute myeloid leukemia is organized as a hierarchy that originates from a primitive hematopoietic cell , 1997, Nature Medicine.

[35]  M. Caligiuri,et al.  A cell initiating human acute myeloid leukaemia after transplantation into SCID mice , 1994, Nature.

[36]  I. Stamenkovic,et al.  CD44 is the principal cell surface receptor for hyaluronate , 1990, Cell.

[37]  R. Stahel,et al.  Immunolocalisation and imaging of small cell cancer xenografts by the IgG2a monoclonal antibody SWA11. , 1989, British Journal of Cancer.

[38]  P. Möller,et al.  Epithelium-specific surface glycoprotein of Mr 34,000 is a widely distributed human carcinoma marker. , 1987, British Journal of Cancer.

[39]  W. Bodmer,et al.  Characterization and chromosomal assignment of a human cell surface antigen defined by the monoclonal antibody AUAI , 1986, International journal of cancer.

[40]  E. McCulloch,et al.  Mouse myeloma tumor stem cells: a primary cell culture assay. , 1971, Journal of the National Cancer Institute.

[41]  W. R. Bruce,et al.  A Quantitative Assay for the Number of Murine Lymphoma Cells capable of Proliferation in vivo , 1963, Nature.

[42]  A. Jemal,et al.  Global Cancer Statistics , 2011 .

[43]  B. Wollenberg,et al.  Potential stem cell marker CD44 is constitutively expressed in permanent cell lines of head and neck cancer. , 2008, In vivo.

[44]  T. Holyoake,et al.  Primitive, quiescent, Philadelphia-positive stem cells from patients with chronic myeloid leukemia are insensitive to STI571 in vitro. , 2002, Blood.

[45]  A. Jemal,et al.  Global cancer statistics , 2011, CA: a cancer journal for clinicians.

[46]  J. Hardcastle,et al.  Colorectal cancer , 1993, Europe Against Cancer European Commission Series for General Practitioners.

[47]  L. Sobin,et al.  TNM Classification of Malignant Tumours , 1987, UICC International Union Against Cancer.

[48]  A. Hamburger,et al.  Primary bioassay of human tumor stem cells. , 1977, Science.