Naegleria: a classic model for de novo basal body assembly

[1]  J. Carneiro,et al.  PLK4 trans-Autoactivation Controls Centriole Biogenesis in Space. , 2015, Developmental cell.

[2]  Joohun Lee,et al.  Identification of a cell cycle-dependent duplicating complex that assembles basal bodies de novo in Naegleria. , 2015, Protist.

[3]  M. Oyama,et al.  Direct interaction of Plk4 with STIL ensures formation of a single procentriole per parental centriole , 2014, Nature Communications.

[4]  C. Walsh The Structure of the Mitotic Spindle and Nucleolus during Mitosis in the Amebo-Flagellate Naegleria , 2012, PloS one.

[5]  J. Raff,et al.  SAS-6 oligomerization: the key to the centriole? , 2011, Nature chemical biology.

[6]  Lillian K. Fritz-Laylin,et al.  The Naegleria genome: a free-living microbial eukaryote lends unique insights into core eukaryotic cell biology. , 2011, Research in microbiology.

[7]  C. Robinson,et al.  Structures of SAS-6 Suggest Its Organization in Centrioles , 2011, Science.

[8]  Lillian K. Fritz-Laylin,et al.  Ancestral centriole and flagella proteins identified by analysis of Naegleria differentiation , 2010, Journal of Cell Science.

[9]  E. Koonin The origin and early evolution of eukaryotes in the light of phylogenomics , 2010, Genome Biology.

[10]  Filipe Tavares-Cadete,et al.  Stepwise evolution of the centriole-assembly pathway , 2010, Journal of Cell Science.

[11]  Lillian K. Fritz-Laylin,et al.  Naegleria gruberi De Novo Basal Body Assembly Occurs via Stepwise Incorporation of Conserved Proteins , 2010, Eukaryotic Cell.

[12]  Hank Tu,et al.  The Genome of Naegleria gruberi Illuminates Early Eukaryotic Versatility , 2010, Cell.

[13]  A. Martínez-Palomo,et al.  Naegleria fowleri: light and electron microscopy study of mitosis. , 2009, Experimental parasitology.

[14]  A. Fry,et al.  Pix Proteins and the Evolution of Centrioles , 2008, PloS one.

[15]  B. Lang,et al.  Toward Resolving the Eukaryotic Tree: The Phylogenetic Positions of Jakobids and Cercozoans , 2007, Current Biology.

[16]  C. Walsh The role of actin, actomyosin and microtubules in defining cell shape during the differentiation of Naegleria amebae into flagellates. , 2007, European journal of cell biology.

[17]  Sun Park,et al.  Naegleria fowleri: functional expression of the Nfa1 protein in transfected Naegleria gruberi by promoter modification. , 2006, Experimental parasitology.

[18]  J. Cho,et al.  De novo formation of basal bodies in Naegleria gruberi , 2005, The Journal of cell biology.

[19]  J. Jonckheere Molecular definition and the ubiquity of species in the genus Naegleria. , 2004 .

[20]  Joohun Lee,et al.  Cloning and characterization of a divergent alpha-tubulin that is expressed specifically in dividing amebae of Naegleria gruberi. , 2002, Gene.

[21]  Y. No,et al.  Transient concentration of a gamma-tubulin-related protein with a pericentrin-related protein in the formation of basal bodies and flagella during the differentiation of Naegleria gruberi. , 2002, Cell motility and the cytoskeleton.

[22]  C. Fulton,et al.  A beta-tubulin gene of Naegleria encodes a carboxy-terminal tyrosine. Aromatic amino acids are conserved at carboxy termini. , 1994, Journal of molecular biology.

[23]  C. Fulton Naegleria: A Research Partner For Cell and Developmental Biology 1 , 1993 .

[24]  C. Fulton,et al.  The alpha-tubulin gene family expressed during cell differentiation in Naegleria gruberi , 1988, The Journal of cell biology.

[25]  C. Walsh Synthesis and assembly of the cytoskeleton of Naegleria gruberi flagellates , 1984, The Journal of cell biology.

[26]  F. Schuster,et al.  Ultrastructure of the amoeboflagellate Tetramitus rostratus. , 1983, The Journal of protozoology.

[27]  A. D. Dingle,et al.  Development of the flagellar rootlet during Naegleria flagellate differentiation. , 1981, Developmental biology.

[28]  S. Bradley,et al.  Ultrastructure of Naegleria fowleri enflagellation , 1981, Journal of bacteriology.

[29]  A. D. Dingle,et al.  Isolation, ultrastructure, and protein composition of the flagellar rootlet of Naegleria gruberi , 1981, The Journal of cell biology.

[30]  R. Miller,et al.  Studies of the rhizoplast from Naegleria gruberi. , 1981, Journal of cell science.

[31]  C. Walsh,et al.  Cell differentiation and flagellar elongation in Naegleria gruberi. Dependence on transcription and translation , 1980, The Journal of cell biology.

[32]  A. D. Dingle Cellular and environmental variables determining numbers of flagella in temperature-shocked Naegleria. , 1979, The Journal of protozoology.

[33]  C. Walsh,et al.  Programmed appearance of translatable flagellar tubulin mRNA during cell differentiation in Naegleria , 1979, Cell.

[34]  C. Fulton,et al.  Programmed synthesis of tubulin for the flagella that develop during cell differentiation in Naegleria gruberi. , 1974, Proceedings of the National Academy of Sciences of the United States of America.

[35]  C. Fulton,et al.  BASAL BODIES, BUT NOT CENTRIOLES, IN NAEGLERIA , 1971, The Journal of cell biology.

[36]  A. D. Dingle Control of flagellum number in Naegleria. Temperature shock induction of multiflagellate cells. , 1970, Journal of cell science.

[37]  C. Fulton Transformation of Tetramitus Amebae into Flagellates , 1970, Science.

[38]  D. Outka,et al.  THE AMEBA-TO-FLAGELLATE TRANSFORMATION IN TETRAMITUS ROSTRATUS , 1967, The Journal of cell biology.

[39]  C. Fulton,et al.  DEVELOPMENT OF THE FLAGELLAR APPARATUS OF NAEGLERIA , 1966, The Journal of cell biology.

[40]  M. Bunting A Preliminary Note on Tetramitus, a Stage in the Life Cycle of a Coprozoic Amoeba. , 1922, Proceedings of the National Academy of Sciences of the United States of America.

[41]  P. Alam,et al.  Results and Problems in Cell Differentiation , 2018 .

[42]  L. Aravind,et al.  Comparative genomics of transcription factors and chromatin proteins in parasitic protists and other eukaryotes. , 2008, International journal for parasitology.

[43]  J. D. de Jonckheere Molecular definition and the ubiquity of species in the genus Naegleria. , 2004, Protist.

[44]  J. Jonckheere,et al.  A Century of Research on the Amoeboflagellate Genus Naegleria , 2002 .

[45]  Y. Y. Levy,et al.  Centrin is synthesized and assembled into basal bodies during Naegleria differentiation. , 1998, Cell motility and the cytoskeleton.

[46]  Y. Y. Levy,et al.  Centrin is a conserved protein that forms diverse associations with centrioles and MTOCs in Naegleria and other organisms. , 1996, Cell motility and the cytoskeleton.

[47]  C. Fulton Cell differentiation in Naegleria gruberi. , 1977, Annual review of microbiology.

[48]  F. Schuster Ultrastructure of mitosis in the amoeboflagellate Naegleria gruberi. , 1975, Tissue & cell.

[49]  Lawrence Razavi,et al.  Chapter 13 Amebo-flagellates as Research Partners: The Laboratory Biology of Naegleria and Tetramitus , 1970 .

[50]  E. Willmer Differentiation in Naegleria. , 1963, Symposia of the Society for Experimental Biology.