Metric inequalities for routings on direct connections with application to line planning

We consider multi-commodity flow problems in which capacities are installed on paths. In this setting, it is often important to distinguish between flows on direct connection routes, using single paths, and flows that include path switching. We derive a feasibility condition for path capacities supporting such direct connection flows similar to the well-known feasibility condition for arc capacities in ordinary multi-commodity flows. The condition can be expressed in terms of a class of metric inequalities for routings on direct connections. We illustrate the concept on the example of the line planning problem in public transport and present an application to large-scale real-world problems.

[1]  J. Farkas Theorie der einfachen Ungleichungen. , 1902 .

[2]  Marc E. Pfetsch,et al.  Models for fare planning in public transport , 2012, Discret. Appl. Math..

[3]  Doktor der Naturwissenschaften Capacitated Network Design - Multi-Commodity Flow Formulations, Cutting Planes, and Demand Uncertainty , 2012 .

[4]  Martin Grötschel,et al.  Production factor mathematics , 2010 .

[5]  Ronald L. Rivest,et al.  Introduction to Algorithms , 1990 .

[6]  R. K. Shyamasundar,et al.  Introduction to algorithms , 1996 .

[7]  Ralf Borndörfer,et al.  A Direct Connection Approach to Integrated Line Planning and Passenger Routing , 2012, ATMOS.

[8]  Stephane Hess,et al.  A Review on Transit Assignment Modelling Approaches to Congested Networks: A New Perspective , 2012 .

[9]  P. Kreuzer,et al.  Optimal lines for railway systems , 1997 .

[10]  Michael R. Bussieck,et al.  Optimal Lines in Public Rail Transport , 1998 .

[11]  David K. Smith Theory of Linear and Integer Programming , 1987 .

[12]  Martin Grötschel,et al.  A Column-Generation Approach to Line Planning in Public Transport , 2007, Transp. Sci..

[13]  Jonathan M. Bunker,et al.  Modelling urban public transit users' route choice behaviour: review and outlook , 2009 .

[14]  K. Onaga,et al.  On feasibility conditions of multicommodity flows in networks , 1971 .

[15]  Karl Nachtigall,et al.  Simultaneous Network Line Planning and Traffic Assignment , 2008, ATMOS.

[16]  Martin Grötschel,et al.  Planning Problems in Public Transit , 2010 .

[17]  Roland Bless,et al.  Network Design , 2011, 4WARD Project.

[18]  M. Iri ON AN EXTENSION OF THE MAXIMUM-FLOW MINIMUM-CUT THEOREM TO MULTICOMMO))ITY FLOWS , 1971 .

[19]  Anita Schöbel,et al.  Line Planning with Minimal Traveling Time , 2005, ATMOS.

[20]  Anita Schöbel,et al.  Line planning in public transportation: models and methods , 2012, OR Spectr..

[21]  Ralf Borndörfer,et al.  Optimierung des Linienplans 2010 in Potsdam , 2012 .

[22]  Marika Karbstein Line Planning and Connectivity , 2013 .

[23]  Martin Grötschel,et al.  Konrad-zuse-zentrum Für Informationstechnik Berlin Models for Line Planning in Public Transport Models for Line Planning in Public Transport * , 2022 .

[24]  Tobias Achterberg,et al.  SCIP: solving constraint integer programs , 2009, Math. Program. Comput..

[25]  Ralf Borndörfer,et al.  Linienoptimierung - reif für die Praxis? , 2010 .