Morphing many polygons across a change in topology

Many solutions have been proposed for morphing between two polygons. However, there has been little attention directed toward morphing between different numbers of polygons, across a change in topology. In this dissertation, three different algorithms are progressively developed for this problem. The first algorithm is designed for the most fundamental case of the category: morphing two polygons that are convex or have minor concavities into one. The second algorithm; or the recursive canyon algorithm, moves a step further to handle input polygons with deep concavities. Based on these two algorithms, the third algorithm is designed to morph between two groups of arbitrary numbers of polygons. All three algorithms require no user interaction; are inexpensive, use dynamic vertex correspondence; follow nonlinear vertex paths, and are able to generate smooth animation results.

[1]  Georges Voronoi Nouvelles applications des paramètres continus à la théorie des formes quadratiques. Deuxième mémoire. Recherches sur les parallélloèdres primitifs. , 1908 .

[2]  Henry Fuchs,et al.  Optimal surface reconstruction from planar contours , 1977, SIGGRAPH.

[3]  Thomas W. Sederberg,et al.  Conversion of complex contour line definitions into polygonal element mosaics , 1978, SIGGRAPH.

[4]  Robin Sibson,et al.  Computing Dirichlet Tessellations in the Plane , 1978, Comput. J..

[5]  D. T. Lee,et al.  Two-Dimensional Voronoi Diagrams in the Lp-Metric , 1980, J. ACM.

[6]  Michael Shantz,et al.  Surface definition for branching, contour-defined objects , 1981, COMG.

[7]  D. T. Lee,et al.  Medial Axis Transformation of a Planar Shape , 1982, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[8]  Leonidas J. Guibas,et al.  Primitives for the manipulation of general subdivisions and the computation of Voronoi diagrams , 1983, STOC.

[9]  David G. Kirkpatrick,et al.  On the shape of a set of points in the plane , 1983, IEEE Trans. Inf. Theory.

[10]  Raimund Seidel,et al.  Voronoi diagrams and arrangements , 1985, SCG '85.

[11]  J. Hopcroft,et al.  The Potential Method for Blending Surfaces and Corners , 1985 .

[12]  J. Hopcroft,et al.  Quadratic blending surfaces , 1985 .

[13]  Michael Ian Shamos,et al.  Computational geometry: an introduction , 1985 .

[14]  David Levin Multidimensional Reconstruction by Set-valued Approximations , 1986 .

[15]  Rex A. Dwyer A simple divide-and-conquer algorithm for computing Delaunay triangulations in O(n log log n) expected time , 1986, SCG '86.

[16]  Steven Fortune,et al.  A sweepline algorithm for Voronoi diagrams , 1986, SCG '86.

[17]  M. Gage,et al.  The heat equation shrinking convex plane curves , 1986 .

[18]  M. Grayson The heat equation shrinks embedded plane curves to round points , 1987 .

[19]  Richard E. Parent,et al.  Shape averaging and its applications to industrial design , 1989, IEEE Computer Graphics and Applications.

[20]  Chin-Tu Chen,et al.  A new surface interpolation technique for reconstructing 3D objects from serial cross-sections , 1989, Comput. Vis. Graph. Image Process..

[21]  Joe D. Warren,et al.  Blending algebraic surfaces , 1989, TOGS.

[22]  Kenneth R. Sloan,et al.  Surfaces from contours , 1992, TOGS.

[23]  Thomas W. Sederberg,et al.  A physically based approach to 2–D shape blending , 1992, SIGGRAPH.

[24]  John K. Johnstone,et al.  Computing the intersection of a plane and a natural quadric , 1992, Comput. Graph..

[25]  Wayne E. Carlson,et al.  Shape transformation for polyhedral objects , 1992, SIGGRAPH.

[26]  P. Levin,et al.  On conforming Delaunay mesh generation , 1992 .

[27]  Thaddeus Beier,et al.  Feature-based image metamorphosis , 1992, SIGGRAPH.

[28]  Rida T. Farouki,et al.  Computing Point/Curve and Curve/Curve Bisectors , 1992, IMA Conference on the Mathematics of Surfaces.

[29]  John K. Johnstone A new intersection algorithm for cyclides and swept surfaces using circle decomposition , 1993, Comput. Aided Geom. Des..

[30]  M. Facello Constructing Delaunay and regular triangulations in three dimensions , 1993 .

[31]  E. Mucke Shapes and implementations in three-dimensional geometry , 1993 .

[32]  Peisheng Gao,et al.  2-D shape blending: an intrinsic solution to the vertex path problem , 1993, SIGGRAPH.

[33]  Tiow Seng Tan,et al.  An upper bound for conforming Delaunay triangulations , 1992, SCG '92.

[34]  R. Farouki,et al.  The bisector of a point and a plane parametric curve , 1994, Comput. Aided Geom. Des..

[35]  Joseph O'Rourke,et al.  Computational Geometry in C. , 1995 .

[36]  John K. Johnstone,et al.  On the lower degree intersections of two natural quadrics , 1994, TOGS.

[37]  Dani Lischinski Incremental Delaunay Triangulation , 1994, Graphics Gems.

[38]  T. Sederberg,et al.  Shape Blending of 2 { D Piecewise Curves , 1995 .

[39]  Robert L. Scot Drysdale,et al.  A comparison of sequential Delaunay triangulation algorithms , 1995, SCG '95.

[40]  John K. Johnstone,et al.  Tensor product surfaces guided by minimal surface area triangulations , 1995, Proceedings Visualization '95.

[41]  Sung Yong Shin,et al.  Image metamorphosis using snakes and free-form deformations , 1995, SIGGRAPH.

[42]  Ari Rappoport,et al.  Shape blending using the star-skeleton representation , 1995, IEEE Computer Graphics and Applications.

[43]  David Meyers Reconstruction of surfaces from planar contours , 1995 .

[44]  Craig Gotsman,et al.  Polygon morphing using a multiresolution representation , 1995 .

[45]  Guillermo Sapiro,et al.  Evolutions of Planar Polygons , 1995, Int. J. Pattern Recognit. Artif. Intell..

[46]  Steven M. Seitz,et al.  View morphing , 1996, SIGGRAPH.

[47]  Robert J. Renka,et al.  Algorithm 751: TRIPACK: a constrained two-dimensional Delaunay triangulation package , 1996, TOMS.

[48]  Douglas DeCarlo,et al.  Topological Evolution of Surfaces , 1996, Graphics Interface.

[49]  John K. Johnstone,et al.  A Philosophy for Smooth Contour Reconstruction , 1996, Geometric Modelling.

[50]  Daniel Cohen-Or,et al.  Contour blending using warp-guided distance field interpolation , 1996, Proceedings of Seventh Annual IEEE Visualization '96.

[51]  Reuven Bar-Yehuda,et al.  Matching of freeform curves , 1997, Comput. Aided Des..

[52]  Hiromasa Suzuki,et al.  3D geometric metamorphosis based on harmonic map , 1997, Proceedings The Fifth Pacific Conference on Computer Graphics and Applications.

[53]  Robert L. Scot Drysdale,et al.  A Comparison of Sequential Delaunay Triangulation Algorithms , 1997, Comput. Geom..

[54]  George Wolberg,et al.  Image morphing: a survey , 1998, The Visual Computer.

[55]  Daniel Cohen-Or,et al.  Three-dimensional distance field metamorphosis , 1998, TOGS.

[56]  Luiz Velho,et al.  Warping and morphing of graphical objects , 1998 .

[57]  Daniel Cohen-Or,et al.  Warp-guided object-space morphing , 1998, The Visual Computer.

[58]  Thomas W. Sederberg,et al.  A work minimization approach to image morphing , 1998, The Visual Computer.

[59]  Marshall W. Bern,et al.  A new Voronoi-based surface reconstruction algorithm , 1998, SIGGRAPH.

[60]  Francis Y. L. Chin,et al.  Finding the Medial Axis of a Simple Polygon in Linear Time , 1995, ISAAC.

[61]  Dinesh Manocha,et al.  Interactive surface decomposition for polyhedral morphing , 1999, The Visual Computer.

[62]  Marc Alexa,et al.  Merging polyhedral shapes with scattered features , 1999, Proceedings Shape Modeling International '99. International Conference on Shape Modeling and Applications.

[63]  James F. O'Brien,et al.  Shape transformation using variational implicit functions , 1999, SIGGRAPH Courses.

[64]  Marc Alexa,et al.  The Morphing Space , 1999 .

[65]  Hyungjun Park,et al.  A New Method for Solving Branching Problems in Surface Reconstruction , 2000 .

[66]  Marc Alexa,et al.  As-rigid-as-possible shape interpolation , 2000, SIGGRAPH.

[67]  David M. Weinstein Scanline surfacing: building separating surfaces from planar contours , 2000, Proceedings Visualization 2000. VIS 2000 (Cat. No.00CH37145).

[68]  Yung-Nien Sun,et al.  Boundary Based Parametric Polygon Morphing , 2001 .

[69]  Tamal K. Dey,et al.  Approximate medial axis as a voronoi subcomplex , 2002, SMA '02.

[70]  L. Chew Constrained Delaunay triangulations , 1987, SCG '87.

[71]  Leonidas J. Guibas,et al.  Randomized incremental construction of Delaunay and Voronoi diagrams , 1990, Algorithmica.