Non-Autonomous Maximal Regularity for Forms of Bounded Variation

We consider a non-autonomous evolutionary problem \[ u' (t)+\mathcal A (t)u(t)=f(t), \quad u(0)=u_0, \] where $V, H$ are Hilbert spaces such that $V$ is continuously and densely embedded in $H$ and the operator $\mathcal A (t)\colon V\to V^\prime$ is associated with a coercive, bounded, symmetric form $\mathfrak{a}(t,.,.)\colon V\times V \to \mathbb{C}$ for all $t \in [0,T]$. Given $f \in L^2(0,T;H)$, $u_0\in V$ there exists always a unique solution $u \in MR(V,V'):= L^2(0,T;V) \cap H^1(0,T;V')$. The purpose of this article is to investigate when $u \in H^1(0,T;H)$. This property of maximal regularity in $H$ is not known in general. We give a positive answer if the form is of bounded variation; i.e., if there exists a bounded and non-decreasing function $g \colon [0,T] \to \mathbb{R}$ such that \begin{equation*} \lvert\mathfrak{a}(t,u,v)- \mathfrak{a}(s,u,v)\rvert \le [g(t)-g(s)] \lVert u \rVert_V \lVert v \rVert_V \quad (s,t \in [0,T], s \le t). \end{equation*} In that case, we also show that $u(.)$ is continuous with values in $V$. Moreover we extend this result to certain perturbations of $\mathcal A (t)$.

[1]  Wolfgang Arendt,et al.  Diffusion in Networks with Time-Dependent Transmission Conditions , 2014 .

[2]  C. DeWitt-Morette,et al.  Mathematical Analysis and Numerical Methods for Science and Technology , 1990 .

[3]  H. Amann,et al.  Maximal Regularity for Nonautonomous Evolution Equations , 2004 .

[4]  E. Ouhabaz,et al.  Maximal regularity for non-autonomous Schrödinger type equations , 2009, 0906.2294.

[5]  Simona Fornaro,et al.  -maximal Regularity for Non-autonomous Evolution Equations , 2022 .

[6]  W. D. Evans,et al.  PARTIAL DIFFERENTIAL EQUATIONS , 1941 .

[7]  D. Gilbarg,et al.  Elliptic Partial Differential Equa-tions of Second Order , 1977 .

[8]  J. Simon Compact sets in the spaceLp(O,T; B) , 1986 .

[9]  J. Prǔss Solvability and Maximal Regularity of Parabolic Evolution Equations with Coefficients Continuous in Time , 2001 .

[10]  O. Ladyženskaja Linear and Quasilinear Equations of Parabolic Type , 1968 .

[11]  J. Lions,et al.  Équations Différentielles Opérationnelles Et Problèmes Aux Limites , 1961 .

[12]  Claude Bardos,et al.  A regularity theorem for parabolic equations , 1971 .

[13]  W. Arendt,et al.  Global existence for quasilinear diffusion equations in isotropic nondivergence form , 2010 .

[14]  W. Arendt,et al.  Maximal regularity for evolution equations governed by non-autonomous forms , 2013, Advances in Differential Equations.

[15]  R. Showalter Monotone operators in Banach space and nonlinear partial differential equations , 1996 .

[16]  El-Maati Ouhabaz,et al.  Invariance of convex sets for non‐autonomous evolution equations governed by forms , 2013, J. Lond. Math. Soc..