MOLECULAR AND ATOMIC GAS IN THE LARGE MAGELLANIC CLOUD. I. CONDITIONS FOR CO DETECTION

We analyze the conditions for detection of CO(1-0) emission in the Large Magellanic Cloud, using the recently completed second NANTEN CO survey. In particular, we investigate correlations between CO integrated intensity and H i integrated intensity, peak brightness temperature, and line width at a resolution of 2.′6 (∼40 pc). We find that significant H i column density (exceeding ∼1021 cm−2) and peak brightness temperature (exceeding ∼20 K) are necessary but not sufficient conditions for CO detection, with many regions of strong H i emission not associated with molecular clouds. The large scatter in CO intensities for a given H i intensity persists even when averaging on scales of >200 pc, indicating that the scatter is not solely due to local conversion of H i into H2 near GMCs. We focus on two possibilities to account for this scatter: either there exist spatial variations in the I(CO) to N(H2) conversion factor, or a significant fraction of the atomic gas is not involved in molecular cloud formation. A weak tendency for CO emission to be suppressed for large H i linewidths supports the second hypothesis, insofar as large linewidths may be indicative of warm H i, and calls into question the likelihood of forming molecular clouds from colliding H i flows. We also find that the ratio of molecular to atomic gas shows no significant correlation (or anticorrelation) with the stellar surface density, though a correlation with midplane hydrostatic pressure Ph is found when the data are binned in Ph. The latter correlation largely reflects the increasing likelihood of CO detection at high H i column density.

[1]  W. Reach,et al.  Extinction and dust/gas ratio in LMC molecular clouds , 2008 .

[2]  J. Ott,et al.  The Molecular Ridge Close to 30 Doradus in the Large Magellanic Cloud , 2008, Publications of the Astronomical Society of Australia.

[3]  R. Klessen,et al.  From the warm magnetized atomic medium to molecular clouds , 2008, 0805.1366.

[4]  U. Chile,et al.  The Second Survey of the Molecular Clouds in the Large Magellanic Cloud by NANTEN. I. Catalog of Molecular Clouds , 2008, 0804.1458.

[5]  R. Gruendl,et al.  Large-Scale Gravitational Instability and Star Formation in the Large Magellanic Cloud , 2007, 0708.3243.

[6]  W. B. Burton,et al.  The Origin of the Magellanic Stream and Its Leading Arm , 2007, 0706.1578.

[7]  M. Dopita,et al.  A Catalog of H I Clouds in the Large Magellanic Cloud , 2007, 0706.1292.

[8]  L. Blitz,et al.  Extinction in the Large Magellanic Cloud , 2007, astro-ph/0703421.

[9]  C. Norman,et al.  Density Structure of the Interstellar Medium and the Star Formation Rate in Galactic Disks , 2007, astro-ph/0701595.

[10]  Di Li,et al.  The Transition from Atomic to Molecular Hydrogen in Interstellar Clouds: 21 cm Signature of the Evolution of Cold Atomic Hydrogen in Dense Clouds , 2006, astro-ph/0610368.

[11]  R. Klessen,et al.  Molecular Cloud Evolution. II. From Cloud Formation to the Early Stages of Star Formation in Decaying Conditions , 2006, astro-ph/0608375.

[12]  S. Glover,et al.  Simulating the Formation of Molecular Clouds. II. Rapid Formation from Turbulent Initial Conditions , 2006, astro-ph/0605121.

[13]  A. Bolatto,et al.  Accepted for publication in The Astrophysical Journal Preprint typeset using L ATEX style emulateapj v. 10/09/06 THE SPITZER SURVEY OF THE SMALL MAGELLANIC CLOUD: FIR EMISSION AND COLD GAS IN THE SMC , 2006 .

[14]  E. Rosolowsky,et al.  The Role of Pressure in GMC Formation II: The H2-Pressure Relation , 2006, astro-ph/0605035.

[15]  Erik Rosolowsky,et al.  Bias‐free Measurement of Giant Molecular Cloud Properties , 2006, astro-ph/0601706.

[16]  Linda J. Smith,et al.  SPITZER SURVEY OF THE LARGE MAGELLANIC CLOUD, SURVEYING THE AGENTS OF A GALAXY'S EVOLUTION (SAGE). IV. DUST PROPERTIES IN THE INTERSTELLAR MEDIUM , 2005, Proceedings of the International Astronomical Union.

[17]  A. Drake,et al.  The Proper Motion of the Large Magellanic Cloud Using HST , 2005, astro-ph/0508457.

[18]  M. Wolff,et al.  FUSE Measurements of Far-Ultraviolet Extinction. II. Magellanic Cloud Sight Lines , 2005, astro-ph/0505416.

[19]  Christopher F. McKee,et al.  A General Theory of Turbulence-regulated Star Formation, from Spirals to Ultraluminous Infrared Galaxies , 2005, astro-ph/0505177.

[20]  E. Rosolowsky,et al.  The Role of Pressure in Giant Molecular Cloud Formation , 2004 .

[21]  E. Rosolowsky,et al.  The Role of Pressure in GMC Formation , 2004, astro-ph/0407492.

[22]  John C. Raymond,et al.  Molecular Cloud Formation behind Shock Waves , 2004, astro-ph/0405329.

[23]  D. O. Astronomy,et al.  Interstellar Turbulence I: Observations and Processes , 2004, astro-ph/0404451.

[24]  M. Dopita,et al.  A Neutral Hydrogen Survey of the Large Magellanic Cloud: Aperture Synthesis and Multibeam Data Combined , 2003, astro-ph/0506224.

[25]  G. Garay,et al.  Results of the ESO-SEST Key Programme on CO in the Magellanic Clouds X. CO emission from star formation regions in LMC and SMC , 2003, astro-ph/0306038.

[26]  J. Dickey,et al.  Fitting Together the H I Absorption and Emission in the Southern Galactic Plane Survey , 2003 .

[27]  R. Haynes,et al.  A new look at the large-scale H I structure of the Large Magellanic Cloud , 2002, astro-ph/0210501.

[28]  Harvard University,et al.  Fitting Together the HI Absorption and Emission in the SGPS , 2002, astro-ph/0211298.

[29]  W. Thi,et al.  Molecular Gas in Spiral Galaxies: A New Warm Phase at Large Galactocentric Distances? , 2002, astro-ph/0208535.

[30]  Di Li,et al.  H I Narrow Self-Absorption in Dark Clouds: Correlations with Molecular Gas and Implications for Cloud Evolution and Star Formation , 2002, astro-ph/0206396.

[31]  N. Suntzeff,et al.  New Understanding of Large Magellanic Cloud Structure, Dynamics, and Orbit from Carbon Star Kinematics , 2002, astro-ph/0205161.

[32]  L. Blitz,et al.  The Relationship between Gas Content and Star Formation in Molecule-rich Spiral Galaxies , 2001, astro-ph/0112204.

[33]  J. Ballesteros-Paredes,et al.  Physical versus Observational Properties of Clouds in Turbulent Molecular Cloud Models , 2001, astro-ph/0108136.

[34]  M. Rubio,et al.  A CO Survey of the LMC with NANTEN: II. Catalog of Molecular Clouds , 2001 .

[35]  B. Elmegreen Star Formation from Galaxies to Globules , 2001, astro-ph/0207114.

[36]  D. York,et al.  A Far Ultraviolet Spectroscopic Explorer Survey of Interstellar Molecular Hydrogen in the Small and Large Magellanic Clouds , 2001, astro-ph/0110262.

[37]  L. Hartmann,et al.  Rapid Formation of Molecular Clouds and Stars in the Solar Neighborhood , 2001, astro-ph/0108023.

[38]  C. Norman,et al.  Numerical Models of the Multiphase Interstellar Matter with Stellar Energy Feedback on a Galactic Scale , 2001 .

[39]  H. Koyama,et al.  An Origin of Supersonic Motions in Interstellar Clouds , 2001, astro-ph/0112420.

[40]  P. Padoan,et al.  The Stellar Initial Mass Function from Turbulent Fragmentation , 2000, astro-ph/0011465.

[41]  A. Boss,et al.  Protostars and Planets VI , 2000 .

[42]  M. Dopita,et al.  H I Shells in the Large Magellanic Cloud , 1999 .

[43]  M. Dopita,et al.  An H I Aperture Synthesis Mosaic of the Large Magellanic Cloud , 1998 .

[44]  D. Jaffe,et al.  Molecular Cloud Structure in the Magellanic Clouds: Effect of Metallicity , 1997, astro-ph/9712158.

[45]  J. Dickey,et al.  H I Clouds in the Large Magellanic Cloud, Cooler than in the Galaxy? , 1997 .

[46]  R. Braun The Temperature and Opacity of Atomic Hydrogen in Spiral Galaxies , 1997, astro-ph/9702111.

[47]  Fionn Murtagh,et al.  In Astronomical Data Analysis Software and Systems IV , 1995 .

[48]  J. Silk,et al.  Gravitational Instability and Disk Star Formation , 1994 .

[49]  Chris Biemesderfer,et al.  Astronomical Data Analysis Software and Systems X , 2001 .

[50]  R. Walterbos,et al.  Physical properties of neutral gas in M31 and the Galaxy , 1992 .

[51]  M. Morris,et al.  Warm neutral halos around molecular clouds. III - Interpretation of H I and CO J = 1-0 data , 1991 .

[52]  B. Elmegreen A pressure and metallicity dependence for molecular cloud correlations and the calibration of mass , 1989 .

[53]  J. Black,et al.  The photodissociation and chemistry of interstellar CO , 1988 .

[54]  Philip R. Maloney,et al.  I(CO)/N(H2) conversions and molecular gas abundances in spiral and irregular galaxies , 1988 .

[55]  A. R. Rivolo,et al.  Mass, luminosity, and line width relations of Galactic molecular clouds , 1987 .

[56]  S. Federman,et al.  The H I distribution in clouds within galaxies , 1987 .

[57]  P. I. Nelson,et al.  Statistical methods for astronomical data with upper limits. II - Correlation and regression , 1986 .

[58]  S. Lichten,et al.  Warm H I Halos around molecular clouds , 1983 .

[59]  S. Federman,et al.  Atomic to molecular hydrogen transition in interstellar clouds , 1979 .

[60]  H. Habing,et al.  Cosmic-Ray Heating of the Interstellar Gas , 1969 .