The Impact of Turbulence on Physics of the Geomagnetic Tail

There is a vast amount of evidence that suggests that the geomagnetic tail is like a turbulent wake behind an obstacle. Large-scale vortices in the wake are able to generate turbulent transport that takes place both along the plasma sheet, in the X and Y directions, and across the plasma sheet, in the Z direction. Thus, turbulent fluctuations in all directions should be taken into consideration when analyzing plasma transport in the plasma sheet, and stability of the plasma sheet configurations. In this review, we summarize and discuss the main results of large and middle scale magnetospheric turbulence yielded by data analysis and modeling. We also identify changes in the description of the magnetospheric dynamics connected with the existence of turbulent fluctuations in the tail.

[1]  D. Telloni,et al.  The Effect of Solar-Wind Turbulence on Magnetospheric Activity , 2020, Frontiers in Physics.

[2]  J. Birn,et al.  Outstanding questions in magnetospheric plasma physics: The pollenzo view , 2020 .

[3]  J. Borovsky The Compression of the Heliospheric Magnetic Structure by Interplanetary Shocks: Is the Structure at 1AU a Manifestation of Solar-Wind Turbulence or Is It Fossil Structure From the Sun? , 2020, Frontiers in Astronomy and Space Sciences.

[4]  F. Califano,et al.  Electron-Only Reconnection in Plasma Turbulence , 2020, Frontiers in Physics.

[5]  J. Borovsky Plasma and Magnetic-Field Structure of the Solar Wind at Inertial-Range Scale Sizes Discerned From Statistical Examinations of the Time-Series Measurements , 2020, Frontiers in Astronomy and Space Sciences.

[6]  Y. Narita,et al.  Effects of Fluctuating Magnetic Field on the Growth of the Kelvin‐Helmholtz Instability at the Earth's Magnetopause , 2020, Journal of Geophysical Research: Space Physics.

[7]  Y. Narita,et al.  Energy Conversion at Kinetic Scales in the Turbulent Magnetosheath , 2019, Front. Astron. Space Sci..

[8]  M. Velli,et al.  Explosive Magnetotail Activity , 2019, Space Science Reviews.

[9]  M. Fujimoto,et al.  Electron magnetic reconnection without ion coupling in Earth’s turbulent magnetosheath , 2018, Nature.

[10]  S. Schwartz,et al.  Magnetic Reconnection, Turbulence, and Particle Acceleration: Observations in the Earth's Magnetotail , 2018 .

[11]  O. Yagodkina,et al.  Structure of magnetospheric current systems and mapping of high latitude magnetospheric regions to the ionosphere , 2017, Journal of Atmospheric and Solar-Terrestrial Physics.

[12]  I. Ovchinnikov,et al.  Turbulent transport of the Earth magnitisphere: Review of the results of observations and modeling , 2017, Geomagnetism and Aeronomy.

[13]  C. Norgren,et al.  MMS Observation of Magnetic Reconnection in the Turbulent Magnetosheath , 2017 .

[14]  O. Yagodkina,et al.  Position of projections of the nightside auroral oval equatorward and poleward edges in the magnetosphere equatorial plane , 2016, Geomagnetism and Aeronomy.

[15]  C. Russell,et al.  Electron scale structures and magnetic reconnection signatures in the turbulent magnetosheath , 2016, 1706.04053.

[16]  J. B. Blake,et al.  Electron-scale measurements of magnetic reconnection in space , 2016, Science.

[17]  Thomas E. Moore,et al.  Magnetospheric Multiscale Overview and Science Objectives , 2016 .

[18]  O. Yagodkina,et al.  Problems with mapping the auroral oval and magnetospheric substorms , 2015, Earth, Planets and Space.

[19]  L. Zelenyi,et al.  Properties of Magnetic Field Fluctuations in the Earth’s Magnetotail and Implications for the General Problem of Structure Formation in Hot Plasmas , 2015 .

[20]  O. Yagodkina,et al.  Comparison of the plasma pressure distributions over the equatorial plane and at low altitudes under magnetically quiet conditions , 2014, Geomagnetism and Aeronomy.

[21]  R. Ergun,et al.  Generation of high‐frequency electric field activity by turbulence in the Earth's magnetotail , 2013 .

[22]  R. Walker,et al.  Dipolarization and turbulence in the plasma sheet during a substorm: THEMIS observations and global MHD simulations , 2013 .

[23]  V. Angelopoulos,et al.  Empirical modeling of plasma sheet pressure and three‐dimensional force‐balanced magnetospheric magnetic field structure: 1. Observation , 2013 .

[24]  E. Antonova,et al.  Exploring the solar wind, ed. Marian Lazar, Chapter 18, Turbulence in the magnetosheath and the problem of plasma penetration inside the magnetosphere , 2012 .

[25]  C. Tang A plasma flow vortex in the magnetotail and its related ionospheric signatures , 2012 .

[26]  R. Walker,et al.  Turbulence in a global magnetohydrodynamic simulation of the Earth's magnetosphere during northward and southward interplanetary magnetic field , 2012 .

[27]  E. Antonova,et al.  Modeling of the turbulent plasma sheet during quiet geomagnetic conditions , 2011 .

[28]  J. Valdivia,et al.  Estimation of the eddy-diffusion coefficients in the plasma sheet using THEMIS satellite data , 2011 .

[29]  J. Valdivia,et al.  Spatial distribution of the eddy diffusion coefficients in the plasma sheet during quiet time and substorms from THEMIS satellite data , 2011 .

[30]  R. Nakamura,et al.  Bursty bulk flows and dipolarization in MHD simulations of magnetotail reconnection , 2011 .

[31]  R. Walker,et al.  Global magnetohydrodynamic simulation of reconnection and turbulence in the plasma sheet , 2010 .

[32]  G. Reeves,et al.  Injection region propagation outside of geosynchronous orbit , 2010 .

[33]  J. Weygand,et al.  Evolution of plasma sheet particle content under different interplanetary magnetic field conditions , 2010 .

[34]  V. Angelopoulos,et al.  Multiple overshoot and rebound of a bursty bulk flow , 2010 .

[35]  V. Angelopoulos,et al.  Observations of plasma vortices in the vicinity of flow-braking: a case study , 2009 .

[36]  A. Runov,et al.  Azimuthal plasma pressure gradient in quiet time plasma sheet , 2009 .

[37]  Yu. I. Yermolaev,et al.  Spatial variation of eddy-diffusion coefficients in the turbulent plasma sheet during substorms , 2009 .

[38]  V. Angelopoulos,et al.  Substorm current wedge driven by plasma flow vortices: THEMIS observations , 2009 .

[39]  O. Kornilov,et al.  Features of auroral breakup obtained using data of ground-based television observations: Case study , 2009 .

[40]  V. Uritsky,et al.  Collective dynamics of bursty particle precipitation initiating in the inner and outer plasma sheet , 2009 .

[41]  J. Borovsky Flux tube texture of the solar wind: Strands of the magnetic carpet at 1 AU?: FLUX TUBE TEXTURE OF SOLAR WIND , 2008 .

[42]  A. J. Klimas,et al.  Scale‐free and scale‐dependent modes of energy release dynamics in the nighttime magnetosphere , 2008, 0807.0631.

[43]  T. Mukai,et al.  Solar wind control of plasma number density in the near-Earth plasma sheet: three-dimensional structure , 2007 .

[44]  Wolfgang Baumjohann,et al.  Bursty Bulk Flow Driven Turbulence in the Earth’s Plasma Sheet , 2006 .

[45]  T. Rosenberg,et al.  Intermittency in the auroral absorption fluctuations as manifestation of magnetospheric turbulence , 2006 .

[46]  E. Antonova Magnetospheric turbulence and properties of magnetospheric dynamics , 2006 .

[47]  Yu. I. Yermolaev,et al.  Variation of the plasma turbulence in the central plasma sheet during substorm phases observed by the interball/tail satellite , 2005 .

[48]  W. Macek,et al.  On the magnetic field fluctuations during magnetospheric tail current disruption: A statistical approach , 2005 .

[49]  A. Jorgensen,et al.  Statistical survey of magnetic and velocity fluctuations in the near-Earth plasma sheet: International Sun Earth Explorer (ISEE-2) measurements , 2005 .

[50]  Robert L. McPherron,et al.  Plasma sheet turbulence observed by Cluster II , 2005 .

[51]  Z. Voros,et al.  Magnetic turbulence in the plasma sheet , 2004, physics/0411230.

[52]  K. Glassmeier,et al.  Multi-scale analysis of turbulence in the Earth's current sheet , 2004 .

[53]  Rumi Nakamura,et al.  Spatial scale of high‐speed flows in the plasma sheet observed by Cluster , 2004 .

[54]  E. Antonova,et al.  Field-aligned current mapping and the problem of the generation of magnetospheric convection , 2004 .

[55]  Rumi Nakamura,et al.  Structure of the Hall current system in the vicinity of the magnetic reconnection site , 2003 .

[56]  Z. Voros,et al.  Multi-scale magnetic field intermittence in the plasma sheet , 2003, Annales Geophysicae.

[57]  V. Uritsky,et al.  Evaluation of spreading critical exponents from the spatiotemporal evolution of emission regions in the nighttime aurora , 2003 .

[58]  Joseph E. Borovsky,et al.  MHD turbulence in the Earth's plasma sheet: Dynamics, dissipation, and driving , 2003 .

[59]  J. Borovsky,et al.  Role of solar wind turbulence in the coupling of the solar wind to the Earth's magnetosphere , 2003 .

[60]  William Dorland,et al.  Inherently three dimensional magnetic reconnection: A mechanism for bursty bulk flows? , 2003 .

[61]  E. Antonova,et al.  Intermittency of magnetospheric dynamics through non‐Gaussian distribution function of PC‐index fluctuations , 2003 .

[62]  Damien Chua,et al.  Scale‐free statistics of spatiotemporal auroral emissions as depicted by POLAR UVI images: Dynamic magnetosphere is an avalanching system , 2002 .

[63]  Wolfgang Baumjohann,et al.  Statistical survey of magnetic field and ion velocity fluctuations in the near-Earth plasma sheet: Active Magnetospheric Particle Trace Explorers/Ion Release Module (AMPTE/IRM) measurements , 2002 .

[64]  J. Bosqued,et al.  Asymmetry of auroral electron precipitations and its relationship to the substorm expansion phase onset , 2002 .

[65]  Chapter 3 - Theoretical Building Blocks , 2002 .

[66]  Yu. I. Yermolaev,et al.  Plasma sheet heating during substorm and the values of the plasma sheet diffusion coefficient obtained on the base of interball/tail probe observations , 2002 .

[67]  E. Antonova The results of interball/tail probe observations the inner magnetosphere substorm onset and particle acceleration , 2002 .

[68]  Wolfgang Baumjohann,et al.  Are earthward bursty bulk flows convective or field-aligned? , 2001 .

[69]  A. Lui Multifractal and intermittent nature of substorm-associated magnetic turbulence in the magnetotail , 2001 .

[70]  E. Antonova,et al.  The model of turbulent plasma sheet during IMF Bz > 0 , 2001 .

[71]  Wolfgang Baumjohann,et al.  Rapid flux transport in the central plasma sheet , 2001 .

[72]  Y. Kamide,et al.  Inconsistency of Magnetic Field and Plasma Velocity Variations in the Distant Plasma Sheet , 2002 .

[73]  Yu. I. Yermolaev,et al.  Determination of the Turbulent Diffusion Coefficient in the Plasma Sheet Using the Project INTERBALL Data , 2000 .

[74]  J. Sauvaud,et al.  Multiple‐spacecraft observation of a narrow transient plasma jet in the Earth's plasma sheet , 2000 .

[75]  V. Sergeev,et al.  Investigation of the Structure and Dynamics of the Plasma Sheet: The CORALL Experiment of the INTERBALL Project , 2000 .

[76]  E. Antonova Large scale magnetospheric turbulence and the topology of magnetospheric currents , 2000 .

[77]  Vassilis Angelopoulos,et al.  Evidence for intermittency in Earth’s plasma sheet and implications for self-organized criticality , 1999 .

[78]  Wolfgang Baumjohann,et al.  Flow braking and the substorm current wedge , 1999 .

[79]  I. Ovchinnikov,et al.  Magnetostatically equilibrated plasma sheet with developed medium-scale turbulence : Structure and implications for substorm dynamics , 1999 .

[80]  T. Mukai,et al.  Substorm-associated pressure variations in the magnetotail plasma sheet and lobe , 1999 .

[81]  R. Elphic,et al.  The driving of the plasma sheet by the solar wind , 1998 .

[82]  Rumi Nakamura,et al.  Structure and dynamics of magnetic reconnection for substorm onsets with Geotail observations , 1998 .

[83]  Vadim M. Uritsky,et al.  Low frequency 1/f-like fluctuations of the AE-index as a possible manifestation of self-organized criticality in the magnetosphere , 1998 .

[84]  M. Rycroft Physics of the Aurora and Airglow , 1997 .

[85]  N. Ganushkina,et al.  Azimuthal hot plasma pressure gradients and dawn-dusk electric field formation , 1997 .

[86]  R. Elphic,et al.  The Earth's plasma sheet as a laboratory for flow turbulence in high-β MHD , 1997, Journal of Plasma Physics.

[87]  E. Antonova,et al.  Current sheet with medium scale developed turbulence and the formation of the plasma sheet of Earth's magnetosphere and solar prominences , 1997 .

[88]  Wolfgang Baumjohann,et al.  Basic Space Plasma Physics , 1996 .

[89]  D. Weimer,et al.  A flexible, IMF dependent model of high-latitude electric potentials having “Space Weather” applications , 1996 .

[90]  G. Consolini,et al.  Multifractal structure of auroral electrojet index data. , 1996, Physical review letters.

[91]  C. Russell,et al.  Multipoint analysis of a bursty bulk flow event on April 11, 1985 , 1996 .

[92]  C. Kennel Convection and Substorms: Paradigms of Magnetospheric Phenomenology , 1996 .

[93]  M. Hoshino,et al.  Turbulent magnetic field in the distant magnetotail: Bottom‐up process of plasmoid formation? , 1994 .

[94]  C. Russell,et al.  Characteristics of ion flow in the quiet state of the inner plasma sheet , 1993 .

[95]  Wolfgang Baumjohann,et al.  Superposed epoch analysis of pressure and magnetic field configuration changes in the plasma sheet , 1993 .

[96]  G. Paschmann,et al.  Bursty bulk flows in the inner central plasma sheet , 1992 .

[97]  Iu. L. Klimontovich,et al.  Turbulent Motion and the Structure of Chaos: A New Approach to the Statistical Theory of Open Systems , 1991 .

[98]  Wolfgang Baumjohann,et al.  Characteristics of high‐speed ion flows in the plasma sheet , 1990 .

[99]  Wolfgang Baumjohann,et al.  Pressure balance between lobe and plasma sheet , 1990 .

[100]  Tetsuya Sato,et al.  Global simulation of the solar wind-magnetosphere interaction: The importance of its numerical validity , 1990 .

[101]  S. Krimigis,et al.  The energetic ion substorm injection boundary , 1990 .

[102]  G. Paschmann,et al.  Average plasma properties in the central plasma sheet , 1989 .

[103]  M. Kivelson,et al.  On the possibility of quasi-static convection in the quiet magnetotail , 1988 .

[104]  D. Montgomery Remarks on the MHD problem of generic magnetospheres and magnetotails , 1987 .

[105]  D. Gurnett,et al.  The theta aurora , 1986 .

[106]  E. W. Hones,et al.  Analysis of 16 plasma vortex events in the geomagnetic tail , 1985 .

[107]  Per-Arne Lindqvist,et al.  Quasistatic electric field measurements with spherical double probes on the GEOS and ISEE satellites , 1984 .

[108]  A. Miura Anomalous transport by magnetohydrodynamic Kelvin‐Helmholtz instabilities in the solar wind‐magnetosphere interaction , 1984 .

[109]  J. Birn,et al.  Self‐consistent theory of three‐dimensional convection in the geomagnetic tail , 1983 .

[110]  O. Troshichev Polar magnetic disturbances and field-aligned currents , 1982 .

[111]  N. Maynard,et al.  Turbulent electric fields in the nightside magnetosphere , 1982 .

[112]  R. Wolf,et al.  Is steady convection possible in the Earth's magnetotail? , 1980 .

[113]  E. W. Hones,et al.  Vortices in magnetospheric plasma flow , 1978 .

[114]  T. Potemra,et al.  The amplitude distribution of field-aligned currents at northern high latitudes observed by TRIAD. Interim report , 1975 .

[115]  Iu. L. Klimontovich,et al.  Statistical theory of open systems , 1967 .

[116]  Syun-Ichi Akasofu,et al.  The development of the auroral substorm. , 1964 .

[117]  J. Dungey Interplanetary Magnetic Field and the Auroral Zones , 1961 .

[118]  C. Sonett,et al.  A Radial Rocket Survey of the Distant Geomagnetic Field , 1960 .