Reconfigurability in space systems : architecting framework and case studies

Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Aeronautics and Astronautics, 2006.

[1]  J. F. C. Kingman,et al.  Dynamic Probabilistic Systems. Volume 1: Markov Models. Volume 2: Semi‐Markov and Decision Processes , 1972 .

[2]  Olivier L. de Weck,et al.  Basic capacity calculation methods and benchmarking for MF-TDMA and MF-CDMA communication satellites , 2005, Int. J. Satell. Commun. Netw..

[3]  Da Zhang,et al.  Architecture Trade Methodology for LEO Personal Communication Systems , 2002 .

[4]  Gerald Walberg How shall we go to Mars? A review of mission scenarios , 1992 .

[5]  P. Spicer *,et al.  Scalable reconfigurable equipment design principles , 2005 .

[6]  Jon Rigelsford Mobile Robots in Rough Terrain: Estimation, Motion Planning, and Control with Application to Planetary Rovers , 2004 .

[7]  William D. Nadir,et al.  Modular Structures for Manned Space Exploration: The Truncated Octahedron as a Building Block , 2005 .

[8]  A. Naumann,et al.  A MANNED LUNAR SURFACE VEHICLE CONCEPT , 1965 .

[9]  L.P.B. Katehi,et al.  Microelectromechanical systems (MEMS) actuators for antenna reconfigurability , 2001, 2001 IEEE MTT-S International Microwave Sympsoium Digest (Cat. No.01CH37157).

[10]  A. Galip Ulsoy,et al.  Reconfigurable manufacturing systems: Key to future manufacturing , 2000, J. Intell. Manuf..

[11]  A O'Dowd Quick-change artists. , 2006, Minnesota medicine.

[12]  Pekka Eskelinen,et al.  Satellite Systems for Personal and Broadband Communications , 2001 .

[13]  O. Weck,et al.  Optimal Reconfigurations for Increasing Capacity of Communication Satellite Constellations , 2005 .

[14]  David Simchi-Levi,et al.  Two-echelon spare parts inventory system subject to a service constraint , 2004 .

[15]  A. G. U Lso,et al.  Reconfigurable manufacturing systems: Key to future manufacturing , 2000 .

[16]  Z. A. Lomnicki,et al.  Mathematical Theory of Reliability , 1966 .

[17]  R. O. Bartlett NASA standard Multimission Modular Spacecraft for future space exploration , 1978 .

[18]  William A. Crossley,et al.  AIRCRAFT SIZING WITH MORPHING AS AN INDEPENDENT VARIABLE: MOTIVATION, STRATEGIES AND INVESTIGATIONS , 2002 .

[19]  Daniel E. Hastings,et al.  Multi-Attribute Tradespace Exploration with Concurrent Design for Space System Conceptual Design , 2003 .

[20]  Saverio F. Morea The Lunar Roving Vehicle: Historical perspective , 1992 .

[21]  James R. Wertz,et al.  Space Mission Analysis and Design , 1992 .

[22]  Sridhar Kota,et al.  Generalized kinematic modeling of Reconfigurable Machine Tools , 2002 .

[23]  Jeffrey H. Smith,et al.  Surface transport vehicles and supporting technology requirements , 1992 .

[24]  Zhao Xiaobo,et al.  A stochastic model of a reconfigurable manufacturing system Part 1: A framework , 2000 .

[25]  Madhavendra Richharia,et al.  Satellite Communication Systems: Design Principles , 1999 .

[26]  Nozomu Nishinaga,et al.  SOFTSAT: RECONFIGURABLE COMMUNICATION SATELLITE SYSTEM , 2003 .

[27]  Li Chen,et al.  Optimal Module Selection for Preliminary Design of Reconfigurable Machine Tools , 2005 .

[28]  Valana Wells,et al.  Mission and concept evaluation for a multirole, mission-adaptable air vehicle , 1999 .

[29]  Marshall B. Jones,et al.  2.1.1 Isoperformance: Analysis and Design of Complex Systems with Known or Desired Outcomes , 2004 .

[30]  F. Pavlics The role of roving vehicles in lunar surface exploration , 1968 .

[31]  Brian Wallace,et al.  A preliminary design tool for planetary rover subsystems , 1992 .

[32]  C. D. Gelatt,et al.  Optimization by Simulated Annealing , 1983, Science.

[33]  Pietro de Santis,et al.  Regenerative satellite payload for flexible multi-media services , 1996 .

[34]  F. Salvadora,et al.  Modularity , product variety , production volume , and component sourcing : theorizing beyond generic prescriptions , 2002 .

[35]  A. R. Jumikis Introduction to Terrain-Vehicle Systems , 1970 .

[36]  Jo Yung Wong,et al.  Theory of ground vehicles , 1978 .

[37]  Ying Zhang,et al.  Modular Reconfigurable Robots in Space Applications , 2003, Auton. Robots.

[38]  Abhijit Sengupta,et al.  ULTRA LONG-LIFE SPACECRAFT FOR LONG DURATION SPACE EXPLORATION MISSIONS $ , 2002 .

[39]  Steven Dubowsky,et al.  Traction Control of Wheeled Robotic Vehicles in Rough Terrain with Application to Planetary Rovers , 2004, Int. J. Robotics Res..

[40]  Paul M. Chau,et al.  Reconfigurable Adaptive Interface Nulling (RAIN) satellite architecture , 1999 .

[41]  Marina Mondin,et al.  A software radio-based reconfigurable transponder for space applications , 2002, Wirel. Commun. Mob. Comput..

[42]  Christopher L. Magee,et al.  Complex System Classification , 2004 .

[43]  Arthur L Kellermann,et al.  Hot wheels. , 2008, American journal of preventive medicine.

[44]  Amir I. Zaghloul,et al.  Active Phased Arrays for Satellite Communications: A System Perspective , 2002 .

[45]  A. Galip Ulsoy,et al.  Trends and perspectives in flexible and reconfigurable manufacturing systems , 2002, J. Intell. Manuf..

[46]  L. Rider,et al.  Optimized polar orbit constellations for redundant earth coverage , 1985 .

[47]  Stanley M. Shinners Techniques of System Engineering , 1967 .

[48]  Walter F. Truszkowski,et al.  BEES for ANTS: Space Mission Applications for the Autonomous NanoTechnology Swarm , 2004 .

[49]  Fred B. Oswald,et al.  Exploration Rover Concepts and Development Challenges , 2005 .

[50]  Kevin Otto,et al.  Incorporating design effort complexity measures in product architectural design and assessment , 2005 .

[51]  Mathieu Chaize Enhancing the Economics of Satellite Constellations via Staged Deployment and Orbital Reconfiguration by Mathieu Chaize , 2003 .

[52]  Lockheed Martin,et al.  Multi-Output Frequency Generation System for AMC 15 and 16 Spacecrafts , 2004 .

[53]  Muli Kifle,et al.  Toward a Dynamically Reconfigurable Computing and Communication System for Small Spacecraft , 2003 .

[54]  Robert Shishko Calculating space station resource prices , 2000 .

[55]  Kemper Lewis,et al.  A Framework for Flexible Systems and Its Implementation in Multiattribute Decision Making , 2004 .

[56]  Kalmanje Krishnakumar,et al.  How to Extend the Capabilities of Space Systems for Long Duration Space Exploration Systems , 2005 .

[57]  Vladimir Hubka,et al.  Theory of Technical Systems , 1988 .

[58]  Robert W. Frike STS-71, Space Shuttle Mission Report , 1995 .

[59]  Scott Hauck The Future of Reconfigurable Systems , 1998 .

[60]  Yong Mo Moon,et al.  Design of Reconfigurable Machine Tools , 2002 .

[61]  Julie Wertz Expected productivity-based risk analysis in conceptual design : with application to the Terrestrial Planet Finder Interferometer mission , 2005 .

[62]  William A. Crossley,et al.  Comparison of Morphing Wing Strategies Based Upon Aircraft Performance Impacts , 2004 .

[63]  Christopher L. Magee,et al.  ESD Terms and Definitions (Version 12) , 2001 .

[64]  Lennon Rodgers,et al.  Concepts and technology development for the autonomous assembly and reconfiguration of modular space systems , 2006 .

[65]  Ludovic Apvrille,et al.  SATELLITE TELECOM SOFTWARE DYNAMIC UPGRADE WITH QOS CONTINUITY , 2002 .

[66]  Steven Dubowsky,et al.  Mobile robot kinematic reconfigurability for rough terrain , 2000, SPIE Optics East.

[67]  Charles M. Grinstead,et al.  Introduction to probability , 1999, Statistics for the Behavioural Sciences.

[68]  William Whittaker,et al.  Analytical configuration of wheeled robotic locomotion , 2001 .

[69]  Tovey C. Bachman,et al.  Model for Estimating Spare Parts Requirements for Future Missions , 2004 .

[70]  David Goldstein,et al.  Spaceframe: Modular Spacecraft Building Blocks for Plug And Play Spacecraft , 2002 .

[71]  Rover Team Characterization of the Martian surface deposits by the Mars Pathfinder rover, Sojourner. Rover Team. , 1997, Science.

[72]  Ahmet S. Yigit,et al.  Optimal selection of module instances for modular products in reconfigurable manufacturing systems , 2003 .

[73]  A. Galip Ulsoy,et al.  Capacity Management in Reconfigurable Manufacturing Systems With Stochastic Market Demand , 2002 .

[74]  Philip Koopman,et al.  A Product Family Approach to Graceful Degradation , 2000, DIPES.

[75]  Anwar S. Dawood,et al.  An adaptive instrument module (AIM) for satellite systems , 1999, ISSPA '99. Proceedings of the Fifth International Symposium on Signal Processing and its Applications (IEEE Cat. No.99EX359).

[76]  F. Pizzano,et al.  Hubble Space Telescope maintenance and refurbishment planning analysis , 1989 .

[77]  Kemper Lewis,et al.  Effective Development of Flexible Systems in Multidisciplinary Optimization , 2004 .

[78]  Karl T. Ulrich,et al.  Product Design and Development , 1995 .

[79]  Rudolf Marcel Smaling,et al.  System architecture analysis and selection under uncertainty , 2005 .

[80]  Adrian Stoica,et al.  Fault-tolerant evolvable hardware using field-programmable transistor arrays , 2000, IEEE Trans. Reliab..

[81]  Paul S. Schenker,et al.  Reconfigurable robots for all-terrain exploration , 2000, SPIE Optics East.

[82]  Steven J. Isakowitz,et al.  International Reference Guide to Space Launch Systems , 1991 .

[83]  Dava J Newman,et al.  Flexibility in system design and implications for aerospace systems. , 2003, Acta astronautica.

[84]  Yoram Koren,et al.  Reconfigurable machine tools , 2001 .

[85]  Olivier L. de Weck,et al.  Staged Deployment of Communications Satellite Constellations in Low Earth Orbit , 2004, J. Aerosp. Comput. Inf. Commun..

[86]  Adrian Stoica,et al.  Evolvable, reconfigurable hardware for future space systems , 2002 .

[87]  Olivier de Weck,et al.  Parametric Scaling Model for Nongeosynchronous Communications Satellites , 2004 .

[88]  Daniel Kirk,et al.  Development of a reconfigurable tool for forming aircraft body panels , 1998 .

[89]  Stephen J. Hoffman,et al.  Human Exploration of Mars: The Reference Mission of the NASA Mars Exploration Study Team , 1997 .

[90]  M. Smotherman,et al.  A non-homogeneous Markov model for phased-mission reliability analysis , 1989 .