Bifurcation analysis and chaos in a discrete reduced Lorenz system

[1]  Debaldev Jana,et al.  Chaotic dynamics of a discrete predator-prey system with prey refuge , 2013, Appl. Math. Comput..

[2]  Zhidong Teng,et al.  Stability and bifurcation analysis of a discrete predator–prey model with nonmonotonic functional response , 2011 .

[3]  J. Sprott,et al.  Fractal Basins in the Lorenz Model , 2011 .

[4]  Gian Italo Bischi,et al.  Three-dimensional discrete-time Lotka-Volterra models with an application to industrial clusters , 2010 .

[5]  Li Li,et al.  Bifurcation and chaos in an epidemic model with nonlinear incidence rates , 2010, Appl. Math. Comput..

[6]  Bing Liu,et al.  Study on the dynamical behaviors of a two-dimensional discrete system ☆ , 2009 .

[7]  Elmetwally M. Elabbasy,et al.  Chaotic dynamics of a discrete prey-predator model with Holling type II , 2009 .

[8]  Nikolaos S. Christodoulou,et al.  Discrete Hopf bifurcation for Runge-Kutta methods , 2008, Appl. Math. Comput..

[9]  Ercan Solak,et al.  Cryptanalysis of a cryptosystem based on discretized two-dimensional chaotic maps , 2008 .

[10]  Chunyu Yang,et al.  Dynamical behaviors and chaos control in a discrete functional response model , 2007 .

[11]  Huijing Sun,et al.  Bifurcations and chaos of a delayed ecological model , 2007 .

[12]  Xinghuo Yu,et al.  Fingerprint images encryption via multi-scroll chaotic attractors , 2007, Appl. Math. Comput..

[13]  Junjie Wei,et al.  Hopf bifurcation analysis in a delayed Nicholson blowflies equation , 2005 .

[14]  Zhujun Jing,et al.  Bifurcation and chaos in discrete FitzHugh–Nagumo system ☆ , 2004 .

[15]  Ioannis G. Kevrekidis,et al.  A route to computational chaos revisited: noninvertibility and the breakup of an invariant circle , 2003, math/0301301.

[16]  Ruiqi Wang,et al.  Chaos Behavior in the Discrete BVP oscillator , 2002, Int. J. Bifurc. Chaos.

[17]  Edward N. Lorenz,et al.  Computational chaos-a prelude to computational instability , 1989 .

[18]  P. Holmes,et al.  Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields , 1983, Applied Mathematical Sciences.

[19]  I. Djellit,et al.  Weak Attractors and Invariant Sets in Lorenz Model , 2011 .

[20]  Elmetwally M. Elabbasy,et al.  Bifurcation Analysis, Chaos and Control in the Burgers Mapping , 2007 .

[21]  Wang Hui,et al.  An Image Information Hiding Algorithm Based On Chaotic Permutation , 2007 .

[22]  Zhujun Jing,et al.  Bifurcation and chaos in discrete-time predator–prey system , 2006 .

[23]  V. Tsybulin,et al.  Invariant sets and attractors of quadratic mapping of plane: Computer experiment and analytical treatment , 1996 .

[24]  Yieh-Hei Wan,et al.  Computation of the Stability Condition for the Hopf Bifurcation of Diffeomorphisms on $\mathbb{R}^2 $ , 1978 .