Phase Quality Optimization Techniques and Limitations in Polarimetric Differential SAR Interferometry

In this paper, the application of polarimetric optimization techniques for Differential SAR Interferometry (DInSAR) applications is studied. The objective of the proposed techniques is to increase the number of temporal coherent scatterers, improving thus the robustness of the DInSAR algorithms exploiting the polarimetric capabilities of data. The relationship between optimum coherences or amplitude dispersion maps, depending on the pixels selection method used, and the final DInSAR results is analyzed, using both orbital and Ground-Based SAR fully-polarimetric data. Moreover, the main advantages and drawbacks of each optimization method will be analyzed, especially when polarimetric stability does not apply. With the optimization techniques presented up to a twofold increase of the pixel candidates in the coherence case and up to a factor of seven in the amplitude dispersion case may be reached.

[1]  Konstantinos P. Papathanassiou,et al.  Polarimetric SAR interferometry , 1998, IEEE Trans. Geosci. Remote. Sens..

[2]  Walid Tabbara,et al.  An interferometric coherence optimization method in radar polarimetry for high-resolution imagery , 2006, IEEE Transactions on Geoscience and Remote Sensing.

[3]  Juan M. Lopez-Sanchez,et al.  Indoor experiments on polarimetric SAR interferometry , 2000, IEEE Trans. Geosci. Remote. Sens..

[4]  Jordi J. Mallorquí,et al.  Linear and nonlinear terrain deformation maps from a reduced set of interferometric SAR images , 2003, IEEE Trans. Geosci. Remote. Sens..

[5]  Juan M. Lopez-Sanchez,et al.  Subsidence monitoring using polarimetric persistent scatterers interferometry , 2011, 2011 IEEE International Geoscience and Remote Sensing Symposium.

[6]  Michele Manunta,et al.  A small-baseline approach for investigating deformations on full-resolution differential SAR interferograms , 2004, IEEE Transactions on Geoscience and Remote Sensing.

[7]  Albert Aguasca,et al.  A solid state L to X-band flexible ground-based SAR system for continuous monitoring applications , 2004, IGARSS 2004. 2004 IEEE International Geoscience and Remote Sensing Symposium.

[8]  Juan M. Lopez-Sanchez,et al.  Improvement of Persistent-Scatterer Interferometry Performance by Means of a Polarimetric Optimization , 2012, IEEE Geoscience and Remote Sensing Letters.

[9]  Carlos López-Martínez,et al.  Polarimetric Differential SAR Interferometry: First Results With Ground-Based Measurements , 2009, IEEE Geoscience and Remote Sensing Letters.

[10]  Thomas L. Ainsworth,et al.  Unsupervised classification of polarimetric synthetic aperture Radar images using fuzzy clustering and EM clustering , 2005, IEEE Transactions on Geoscience and Remote Sensing.

[11]  J. Mallorquí,et al.  The Coherent Pixels Technique (CPT): An Advanced DInSAR Technique for Nonlinear Deformation Monitoring , 2008 .

[12]  Jordi J. Mallorquí,et al.  Advances on DInSAR with ERS and ENVISAT Data using the Coherent Pixels Technique (CPT) , 2006, 2006 IEEE International Symposium on Geoscience and Remote Sensing.

[13]  Fernando Vicente-Guijalba,et al.  A Contribution of Polarimetry to Satellite Differential SAR Interferometry: Increasing the Number of Pixel Candidates , 2010, IEEE Geoscience and Remote Sensing Letters.

[14]  S. Hensley,et al.  Radar interferometry , 2008, 2008 IEEE Radar Conference.

[15]  Carlos López-Martínez,et al.  Polarimetric coherence optimization for interferometric differential applications , 2009, 2009 IEEE International Geoscience and Remote Sensing Symposium.

[16]  Alexander B. Kostinski,et al.  On foundations of radar polarimetry , 1986 .

[17]  Fabio Rocca,et al.  Permanent scatterers in SAR interferometry , 1999, Remote Sensing.

[18]  Laurent Ferro-Famil,et al.  Multi-baseline POL-inSAR statistical techniques for the characterization of distributed media , 2009, 2009 IEEE International Geoscience and Remote Sensing Symposium.

[19]  E. Pottier,et al.  Polarimetric Radar Imaging: From Basics to Applications , 2009 .