The multi-symplectic Fourier pseudospectral method for solving two-dimensional Hamiltonian PDEs

In this paper, the multi-symplectic Fourier pseudospectral (MSFP) method is generalized to solve two-dimensional Hamiltonian PDEs with periodic boundary conditions. Using the Fourier pseudospectral method in the space of the two-dimensional Hamiltonian PDE (2D-HPDE), the semi-discrete system obtained is proved to have semi-discrete multi-symplectic conservation laws and a global symplecticity conservation law. Then, the implicit midpoint rule is employed for time integration to obtain the MSFP method for the 2D-HPDE. The fully discrete multi-symplectic conservation laws are also obtained. In addition, the proposed method is applied to solve the Zakharov-Kuznetsov (ZK) equation and the Kadomtsev-Petviashvili (KP) equation. Numerical experiments on soliton solutions of the ZK equation and the KP equation show the high accuracy and effectiveness of the proposed method.

[1]  Brian E. Moore,et al.  Backward error analysis for multi-symplectic integration methods , 2003, Numerische Mathematik.

[2]  Yan Xu,et al.  Local discontinuous Galerkin methods for two classes of two-dimensional nonlinear wave equations , 2005 .

[3]  Jian Wang A note on multisymplectic Fourier pseudospectral discretization for the nonlinear Schrödinger equation , 2007, Appl. Math. Comput..

[4]  Brynjulf Owren,et al.  Multi-symplectic integration of the Camassa-Holm equation , 2008, J. Comput. Phys..

[5]  Jingjing Zhang,et al.  Splitting multisymplectic integrators for Maxwell's equations , 2010, J. Comput. Phys..

[6]  Chun Li,et al.  Multi-symplectic Runge-Kutta-Nyström methods for nonlinear Schrödinger equations with variable coefficients , 2007, J. Comput. Phys..

[7]  Jian-Qiang Sun,et al.  Multi-symplectic methods for the coupled 1D nonlinear Schrödinger system , 2003 .

[8]  Bülent Karasözen,et al.  Symplectic and multi-symplectic methods for coupled nonlinear Schrödinger equations with periodic solutions , 2007, Comput. Phys. Commun..

[9]  Jian Wang Multisymplectic numerical method for the Zakharov system , 2009, Comput. Phys. Commun..

[10]  Jian Wang On multisymplecticity of Sinc-Gauss-Legendre collocation discretizations for some Hamiltonian PDEs , 2008, Appl. Math. Comput..

[11]  Tingting Liu,et al.  Multisymplectic geometry and multisymplectic Preissman scheme for the KP equation , 2002 .

[12]  Chi-Wang Shu,et al.  Local discontinuous Galerkin methods for nonlinear Schrödinger equations , 2005 .

[13]  Chi-Wang Shu,et al.  The Local Discontinuous Galerkin Method for Time-Dependent Convection-Diffusion Systems , 1998 .

[14]  S. Reich Multi-Symplectic Runge—Kutta Collocation Methods for Hamiltonian Wave Equations , 2000 .

[15]  Constance M. Schober,et al.  Multisymplecticity and wave action conservation , 2009, Math. Comput. Simul..

[16]  S. Reich,et al.  Multi-symplectic spectral discretizations for the Zakharov–Kuznetsov and shallow water equations , 2001 .

[17]  Takuji Kawahara,et al.  Cylindrical quasi-solitons of the Zakharov-Kuznetsov equation , 1990 .

[18]  Multisymplectic Pseudospectral Discretizations for (3+1)-Dimensional Klein-Gordon Equation , 2008 .

[19]  Doron Levy,et al.  Local discontinuous Galerkin methods for nonlinear dispersive equations , 2004 .

[20]  T. Mitsui,et al.  A Conservative Spectral Method for Several Two-Dimensional Nonlinear Wave Equations , 1999 .

[21]  Songhe Song,et al.  Symplectic and multi-symplectic wavelet collocation methods for two-dimensional Schrödinger equations , 2011 .

[22]  S. Reich,et al.  Numerical methods for Hamiltonian PDEs , 2006 .

[23]  Songhe Song,et al.  Multi-symplectic splitting method for the coupled nonlinear Schrödinger equation , 2010, Comput. Phys. Commun..

[24]  Songhe Song,et al.  Multi-symplectic wavelet collocation method for the nonlinear Schrödinger equation and the Camassa-Holm equation , 2011, Comput. Phys. Commun..

[25]  S. Reich,et al.  Multi-symplectic integrators: numerical schemes for Hamiltonian PDEs that conserve symplecticity , 2001 .

[26]  M. Qin,et al.  MULTI-SYMPLECTIC FOURIER PSEUDOSPECTRAL METHOD FOR THE NONLINEAR SCHR ¨ ODINGER EQUATION , 2001 .

[27]  Chi-Wang Shu,et al.  Local Discontinuous Galerkin Methods for Partial Differential Equations with Higher Order Derivatives , 2002, J. Sci. Comput..

[28]  Jason Frank,et al.  On the multisymplecticity of partitioned Runge–Kutta and splitting methods , 2007, Int. J. Comput. Math..

[29]  Chi-Wang Shu,et al.  A Local Discontinuous Galerkin Method for KdV Type Equations , 2002, SIAM J. Numer. Anal..

[30]  U. Ascher,et al.  Multisymplectic box schemes and the Korteweg{de Vries equation , 2004 .

[31]  M. Qin,et al.  Multisymplectic geometry and multisymplectic Preissmann scheme for the KdV equation , 2000 .

[32]  Jian-Qiang Sun,et al.  Numerical simulations of collision behaviors of optical solitons in birefringent fibres , 2009 .