III Super-Resolution by Data Inversion

Publisher Summary This chapter explains super-resolution using case examples, and discusses the classical Rayleigh resolution limit and defines it in terms of the overlap between the images of two-point sources. It is shown that, in the framework of modern Fourier optics, the resolving power is characterized instead by specifying the spatial-frequency band associated with the instrument. Some important features of inversion methods are discussed to the extent that they relate to the assessment of resolution limits. The main difficulty encountered in solving inverse problems is their sensitivity to noise in the data, which can be the source of major instabilities in the solutions. The role of regularization is to prevent such instabilities from occurring. The chapter explains the problem of extrapolating the object spectrum outside the band or the effective band under the assumption that the object vanishes outside some finite known domain. The case of scanning microscopy is considered. The chapter also focuses on confocal microscopy and shows how the use of data inversion techniques allows enhancing the resolving power of such microscopes. The problem of inverse diffraction from plane to plane, which consists of back-propagating toward the source plane a field propagating in free space, is considered.

[1]  C. Palma,et al.  An Iterative Method for Restoring Noisy Images , 1978 .

[2]  Ernst H. K. Stelzer,et al.  Optical fluorescence microscopy in three dimensions: microtomoscopy , 1985 .

[3]  F. Gori,et al.  Signal restoration for linear systems with weighted inputs. Singular value analysis for two cases of low-pass filtering , 1985 .

[4]  G. Viano On the extrapolation of optical image data , 1976 .

[5]  P. H. Cittert Zum Einfluß der Spaltbreite auf die Intensitätsverteilung in Spektrallinien. II , 1930 .

[6]  Tarek M. Habashy,et al.  Invisible Bodies and Uniqueness of the Inverse Scattering Problem , 1993 .

[7]  D. Slepian Prolate spheroidal wave functions, Fourier analysis and uncertainty — IV: Extensions to many dimensions; generalized prolate spheroidal functions , 1964 .

[8]  Giorgio Guattari,et al.  Emulation of superresolving pupils through image postprocessing , 1986 .

[9]  Julian D. Maynard,et al.  Holographic Imaging without the Wavelength Resolution Limit , 1980 .

[10]  A. Papoulis Systems and transforms with applications in optics , 1981 .

[11]  C. K. Rushforth,et al.  Restoration, Resolution, and Noise , 1968 .

[12]  D. Youla,et al.  Image Restoration by the Method of Convex Projections: Part 1ߞTheory , 1982, IEEE Transactions on Medical Imaging.

[13]  A. Papoulis A new algorithm in spectral analysis and band-limited extrapolation. , 1975 .

[14]  E. Abbe Beiträge zur Theorie des Mikroskops und der mikroskopischen Wahrnehmung , 1873 .

[15]  E. Betzig,et al.  Near-Field Optics: Microscopy, Spectroscopy, and Surface Modification Beyond the Diffraction Limit , 1992, Science.

[16]  Franco Gori,et al.  Degrees of freedom of an optical image in coherent illumination, in the presence of aberrations , 1975 .

[17]  G. Sherman Integral-Transform Formulation of Diffraction Theory* , 1967 .

[18]  Mario Bertero,et al.  Regularization methods in image restoration: An application to HST images , 1995, Int. J. Imaging Syst. Technol..

[19]  G. D. Francia Resolving Power and Information , 1955 .

[20]  H. Wolter V On Basic Analogies and Principal Differences Between Optical and Electronic Information , 1961 .

[21]  Mario Bertero,et al.  Stability problems in inverse diffraction , 1981 .

[22]  Edward Roy Pike,et al.  Analytic inversion formula for confocal scanning microscopy , 1987 .

[23]  E. Ash,et al.  Super-resolution Aperture Scanning Microscope , 1972, Nature.

[24]  A. J. Jerri The Shannon sampling theorem—Its various extensions and applications: A tutorial review , 1977, Proceedings of the IEEE.

[25]  G. D. Francia Degrees of Freedom of Image , 1969 .

[26]  R. Gerchberg Super-resolution through Error Energy Reduction , 1974 .

[27]  D. Slepian,et al.  Prolate spheroidal wave functions, fourier analysis and uncertainty — II , 1961 .

[28]  Daniel Courjon,et al.  Near field optics , 1993 .

[29]  C. Sheppard,et al.  Image Formation in the Scanning Microscope , 1977 .

[30]  Mario Bertero,et al.  Linear inverse problems with discrete data. I. General formulation and singular system analysis , 1985 .

[31]  Mario Bertero,et al.  Super-resolution in confocal scanning microscopy: IV. Theory of data inversion by the use of optical masks , 1992 .

[32]  G. J. Brakenhoff,et al.  3‐D image formation in high‐aperture fluorescence confocal microscopy: a numerical analysis , 1990 .

[33]  Edmund Taylor Whittaker XVIII.—On the Functions which are represented by the Expansions of the Interpolation-Theory , 1915 .

[34]  Harbans S. Dhadwal,et al.  Regularized Iterative and Non-iterative Procedures for Object Restoration from Experimental Data , 1983 .

[35]  O. Strand,et al.  Minimum-RMS Estimation of the Numerical Solution of a Fredholm Integral Equation of the First Kind , 1968 .

[36]  Valentin F. Turchin,et al.  The use of mathematical-statistics methods in the solution of incorrectly posed problems , 1971 .

[37]  Edward S. Meinel,et al.  Origins of linear and nonlinear recursive restoration algorithms , 1986 .

[38]  Franco Gori,et al.  On an Iterative Method for Super-resolution , 1975 .

[39]  Reginald L. Lagendijk,et al.  Regularized iterative image restoration with ringing reduction , 1988, IEEE Trans. Acoust. Speech Signal Process..

[40]  E. Synge XXXVIII. A suggested method for extending microscopic resolution into the ultra-microscopic region , 1928 .

[41]  Mario Bertero,et al.  Three‐dimensional image restoration and super‐resolution in fluorescence confocal microscopy , 1990 .

[42]  B. R. Frieden Image enhancement and restoration , 1979 .

[43]  P. D. Santis,et al.  Degrees of Freedom of Aberrated Images , 1976 .

[44]  M. Bertero Linear Inverse and III-Posed Problems , 1989 .

[45]  S. Bozhevolnyi,et al.  EXTENSION OF THE MACROSCOPIC MODEL FOR REFLECTION NEAR-FIELD MICROSCOPY : REGULARIZATION AND IMAGE FORMATION , 1994 .

[46]  A. Lent,et al.  An iterative method for the extrapolation of band-limited functions , 1981 .

[47]  E. Wolf,et al.  Inverse Diffraction and a New Reciprocity Theorem , 1968 .

[48]  L. Landweber An iteration formula for Fredholm integral equations of the first kind , 1951 .

[49]  Thomas S. Huang,et al.  Picture Processing and Digital Filtering , 1981, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[50]  N. Wiener,et al.  Fourier Transforms in the Complex Domain , 1934 .

[51]  M. Bertero,et al.  On the problems of object restoration and image extrapolation in optics , 1979 .

[52]  Joel Franklin,et al.  Well-posed stochastic extensions of ill-posed linear problems☆ , 1970 .

[53]  Mario Bertero,et al.  Resolution in Diffraction-limited Imaging, a Singular Value Analysis: III. The Effect of Sampling an , 1982 .

[54]  G. Toraldo di Francia,et al.  Super-gain antennas and optical resolving power , 1952 .

[55]  D. A. Bell,et al.  Information theory and its engineering applications , 1968 .

[56]  B. Hoenders The Uniqueness of Inverse Problems , 1978 .

[57]  L. Lucy An iterative technique for the rectification of observed distributions , 1974 .

[58]  R. Mersereau,et al.  Iterative methods for image deblurring , 1990 .

[59]  J. L. Harris,et al.  Diffraction and Resolving Power , 1964 .

[60]  Mario Bertero,et al.  Resolution in diffraction-limited imaging, a singular value analysis: IV. The case of uncertain localization or non-uniform illumination of the object , 1984 .

[61]  Franco Gori,et al.  Number of Degrees of Freedom in Inverse Diffraction , 1983 .

[62]  C. Sheppard Super-resolution in confocal imaging , 1988 .

[63]  A. N. Tikhonov,et al.  Solutions of ill-posed problems , 1977 .

[64]  C. W. Groetsch,et al.  The theory of Tikhonov regularization for Fredholm equations of the first kind , 1984 .

[65]  Mario Bertero,et al.  Inverse scattering problems in optics , 1980 .

[66]  J. Goodman Introduction to Fourier optics , 1969 .

[67]  Michel Defrise,et al.  Super-resolution in confocal scanning microscopy: generalized inversion formulae , 1992 .

[68]  F. Natterer The Mathematics of Computerized Tomography , 1986 .

[69]  Emil Wolf,et al.  Principles of Optics: Contents , 1999 .

[70]  Tarek M. Habashy,et al.  Reconstruction of Scattering Potentials from Incomplete Data , 1994 .

[71]  C W McCutchen,et al.  Superresolution in microscopy and the Abbe resolution limit. , 1967, Journal of the Optical Society of America.

[72]  H. Baltes Inverse source problems in optics , 1978 .

[73]  N. Nanninga,et al.  Three‐Dimensional Imaging by Confocal Scanning Fluorescence Microscopy a , 1986, Annals of the New York Academy of Sciences.

[74]  David Middleton,et al.  Sampling and Reconstruction of Wave-Number-Limited Functions in N-Dimensional Euclidean Spaces , 1962, Inf. Control..

[75]  John G. Walker Optical Imaging with Resolution Exceeding the Rayleigh Criterion , 1983 .

[76]  C. Sheppard,et al.  Theory and practice of scanning optical microscopy , 1984 .

[77]  G. J. Brakenhoff,et al.  Confocal scanning light microscopy with high aperture immersion lenses , 1979 .

[78]  Richard H. Sherman,et al.  Chaotic communications in the presence of noise , 1993, Optics & Photonics.

[79]  B. R. Hunt,et al.  Digital Image Restoration , 1977 .

[80]  E. Wolf,et al.  Electromagnetic diffraction in optical systems, II. Structure of the image field in an aplanatic system , 1959, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[81]  J. G. Walker,et al.  Superresolution in confocal scanning microscopy: experimental confirmation in the 1D coherent case , 1989 .

[82]  L. Marton,et al.  Advances in Electronics and Electron Physics , 1958 .

[83]  R.W. Schafer,et al.  Constrained iterative restoration algorithms , 1981, Proceedings of the IEEE.

[84]  M. Bertero,et al.  Super-resolution in confocal scanning microscopy: III. The case of circular pupils , 1991 .

[85]  L. Shepp,et al.  Maximum Likelihood Reconstruction for Emission Tomography , 1983, IEEE Transactions on Medical Imaging.

[86]  William H. Richardson,et al.  Bayesian-Based Iterative Method of Image Restoration , 1972 .

[87]  Mario Bertero,et al.  Super-resolution in confocal scanning microscopy , 1987 .

[88]  Mario Bertero,et al.  Superresolving scanning optical microscopy using holographic optical processing , 1993 .

[89]  K. A. Stewart,et al.  Image Recovery¿Theory and Applications , 1987 .

[90]  Mario Bertero,et al.  Super-resolution in confocal scanning microscopy: II. The incoherent case , 1989 .

[91]  Superresolving masks for incoherent scanning microscopy , 1993 .

[92]  M. Bertero,et al.  Linear inverse problems with discrete data: II. Stability and regularisation , 1988 .