Centrifugal Spinning: An Alternative Approach to Fabricate Nanofibers at High Speed and Low Cost

Nanofibers are an important class of material that is useful in a variety of applications, including filtration, tissue engineering, protective clothing, battery separators, energy storage, etc. So far, electrospinning is the most used method for producing nanofibers. However, the wide-spread commercial use of electrospinning is limited mainly due to its low production rate. Most other nanofiber production methods, such as melt-blowing, bicomponent fiber spinning, phase separation, template synthesis, and self-assembly, are complex and can only be used to make nanofibers from limited types of polymers. Centrifugal spinning is an alternative method for producing nanofibers from various materials at high speed and low cost. In centrifugal spinning, the spinning fluid is placed in a rotating spinning head. When the rotating speed reaches a critical value, the centrifugal force overcomes the surface tension of the spinning fluid to eject a liquid jet from the nozzle tip of the spinning head. The jet then undergoes a stretching process and is eventually deposited on the collector, forming solidified nanofibers. Centrifugal spinning is simple and enables the rapid fabrication of nanofibers for various applications. This article gives an overview on the centrifugal spinning process, and compares it with conventional nanofiber production methods.

[1]  P. Mather,et al.  Conductive shape memory nanocomposites for high speed electrical actuation , 2010 .

[2]  N. T. Huff,et al.  The structure and properties of glass fibres , 2009 .

[3]  A. Valipouri,et al.  A novel method for manufacturing nanofibers , 2013, Fibers and Polymers.

[4]  Bing Xu,et al.  Supramolecular hydrogels respond to ligand-receptor interaction. , 2003, Journal of the American Chemical Society.

[5]  David G Simpson,et al.  Nanofiber technology: designing the next generation of tissue engineering scaffolds. , 2007, Advanced drug delivery reviews.

[6]  Mohan Edirisinghe,et al.  Forming of polymer nanofibers by a pressurised gyration process. , 2013, Macromolecular rapid communications.

[7]  V. Pourcelle,et al.  Surface functionalization of a poly(butylene terephthalate) (PBT) melt-blown filtration membrane by wet chemistry and photo-grafting , 2007, Journal of biomaterials science. Polymer edition.

[8]  R. Kessick,et al.  The use of AC potentials in electrospraying and electrospinning processes , 2004 .

[9]  X. Zhang,et al.  Parameter study and characterization for polyacrylonitrile nanofibers fabricated via centrifugal spinning process , 2013 .

[10]  G. Eda,et al.  Solvent effects on jet evolution during electrospinning of semi-dilute polystyrene solutions , 2007 .

[11]  C. R. Martin,et al.  Membrane-Based Synthesis of Nanomaterials , 1996 .

[12]  H. Gu,et al.  Enzymatic Formation of Supramolecular Hydrogels , 2004 .

[13]  Darrell H. Reneker,et al.  Beaded nanofibers formed during electrospinning , 1999 .

[14]  Jinqiang Liu,et al.  Preparation of nanocrystalline titanium dioxide fibers using sol–gel method and centrifugal spinning , 2013, Journal of Sol-Gel Science and Technology.

[15]  Rajiv Padhye,et al.  Recent advances in nanofibre fabrication techniques , 2012 .

[16]  Timothy E. Long,et al.  Electrospinning of linear homopolymers of poly(methyl methacrylate): exploring relationships between fiber formation, viscosity, molecular weight and concentration in a good solvent , 2005 .

[17]  Bing Xu,et al.  A simple visual assay based on small molecule hydrogels for detecting inhibitors of enzymes. , 2004, Chemical communications.

[18]  Josue A. Goss,et al.  A simple model for nanofiber formation by rotary jet-spinning , 2011, 1110.1424.

[19]  M. Peletier,et al.  A model of rotary spinning process , 2010 .

[20]  T. Aida,et al.  Template synthesis of polypyrrole nanofibers insulated within one-dimensional silicate channels: hexagonal versus lamellar for recombination of polarons into bipolarons. , 2003, Angewandte Chemie.

[21]  S. J. Eichhorn,et al.  Natural, regenerated, inorganic and specialist fibres , 2009 .

[22]  S. Ramakrishna,et al.  Centrifugal spun ultrafine fibrous web as a potential drug delivery vehicle , 2013 .

[23]  K. Lozano,et al.  Fabrication of Melt Spun Polypropylene Nanofibers by Forcespinning , 2013 .

[24]  Xiangwu Zhang,et al.  Diameter control of electrospun polyacrylonitrile/iron acetylacetonate ultrafine nanofibers , 2008 .

[25]  Yanlin Song,et al.  Super-hydrophobic surface of aligned polyacrylonitrile nanofibers. , 2002, Angewandte Chemie.

[26]  Kevin Kit Parker,et al.  Nanofiber assembly by rotary jet-spinning. , 2010, Nano letters.

[27]  L. Rayleigh Further Observations upon Liquid Jets, in Continuation of Those Recorded in the Royal Society's 'Proceedings' for March and May, 1879 , 1882 .

[28]  Charles R. Martin,et al.  Nanomaterials: A Membrane-Based Synthetic Approach , 1994, Science.

[29]  Christopher J. Ellison,et al.  Melt blown nanofibers: Fiber diameter distributions and onset of fiber breakup , 2007 .

[30]  Jian Shi,et al.  Fabrication of polymer fiber scaffolds by centrifugal spinning for cell culture studies , 2011 .

[31]  Jinqiang Liu,et al.  Preparation of High-Quality Zirconia Fibers by Super-High Rotational Centrifugal Spinning of Inorganic Sol , 2013 .

[32]  F. Zhou,et al.  Manufacturing technologies of polymeric nanofibres and nanofibre yarns , 2008 .

[33]  Frank Ko,et al.  Electrostatic fabrication of ultrafine conducting fibers: polyaniline/polyethylene oxide blends , 2000 .

[34]  Bing Xu,et al.  Supramolecular hydrogels based on biofunctional nanofibers of self-assembled small molecules , 2007 .

[35]  S. Shivkumar,et al.  Molecular weight dependent structural regimes during the electrospinning of PVA , 2007 .

[36]  D. Reneker,et al.  Nanometre diameter fibres of polymer, produced by electrospinning , 1996 .

[37]  Antonios G Mikos,et al.  Polymeric nanofibers in tissue engineering. , 2011, Tissue engineering. Part B, Reviews.

[38]  Richard C. Flagan,et al.  Droplet Evaporation and Discharge Dynamics in Electrospray Ionization , 2002 .

[39]  Jun Kameoka,et al.  Fabrication of oriented polymeric nanofibers on planar surfaces by electrospinning , 2003 .

[40]  Nestor A. Santos,et al.  Production and characterization of hybrid BEH-PPV/PEO conjugated polymer nanofibers by forcespinning™ , 2012 .

[41]  Mariah D. Woodroof,et al.  Effect of platinum salt concentration on the electrospinning of polyacrylonitrile/platinum acetylacetonate solution , 2009 .

[42]  Satish Kumar,et al.  Carbon nanotube reinforced small diameter polyacrylonitrile based carbon fiber , 2009 .

[43]  Younan Xia,et al.  Electrospinning of Nanofibers: Reinventing the Wheel? , 2004 .

[44]  Burak Erman,et al.  Electrospinning of polyurethane fibers , 2002 .

[45]  K. Shanmuganathan,et al.  Solventless High Throughput Manufacturing of Poly(butylene terephthalate) Nanofibers. , 2012, ACS macro letters.

[46]  Mehdi Afshari,et al.  Porous Nylon-6 Fibers via a Novel Salt-Induced Electrospinning Method , 2009 .

[47]  R. H. Magarvey,et al.  Note on the break-up of a charged liquid jet , 1962, Journal of Fluid Mechanics.

[48]  B. Pourdeyhimi,et al.  Influence of polymer type, composition, and interface on the structural and mechanical properties of core/sheath type bicomponent nonwoven fibers , 2012, Journal of Materials Science.

[49]  Chun-Guey Wu,et al.  Conducting Polyaniline Filaments in a Mesoporous Channel Host , 1994, Science.

[50]  B. Pourdeyhimi,et al.  Melt‐blowing thermoplastic polyurethane and polyether‐block‐amide elastomers: Effect of processing conditions and crystallization on web properties , 2009 .

[51]  F. Dabirian,et al.  A comparative study of jet formation and nanofiber alignment in electrospinning and electrocentrifugal spinning systems , 2011 .

[52]  Gary E. Wnek,et al.  Role of chain entanglements on fiber formation during electrospinning of polymer solutions: Good solvent, non-specific polymer-polymer interaction limit , 2005 .

[53]  J. A. Cooper,et al.  Large-scale and highly efficient synthesis of micro- and nano-fibers with controlled fiber morphology by centrifugal jet spinning for tissue regeneration. , 2013, Nanoscale.

[54]  C. Lim,et al.  Recent development of polymer nanofibers for biomedical and biotechnological applications , 2005, Journal of materials science. Materials in medicine.

[55]  Karen Lozano,et al.  Preparation and characterization of polyvinylidene fluoride nanofibrous membranes by forcespinning , 2012 .

[56]  O. Toprakçi,et al.  Formation and characterization of core-sheath nanofibers through electrospinning and surface-initiated polymerization , 2010 .

[57]  D. Reneker,et al.  Polybenzimidazole nanofiber produced by electrospinning , 1999 .

[58]  M. Burghard,et al.  Polymer nanofibers via nozzle-free centrifugal spinning. , 2008, Nano letters.

[59]  Michael L. Ramírez,et al.  Electrospinning to Forcespinning , 2010 .

[60]  Younan Xia,et al.  Electrospinning of nanofibers with core-sheath, hollow, or porous structures , 2005 .

[61]  K. Lozano,et al.  Production and characterization of polycaprolactone nanofibers via forcespinning™ technology , 2012 .

[62]  Haiqing Liu,et al.  Sea‐island polyurethane/polycarbonate composite nanofiber fabricated through electrospinning , 2009 .

[63]  P. Ma,et al.  Synthetic nano-scale fibrous extracellular matrix. , 1999, Journal of biomedical materials research.

[64]  Minna Kellomäki,et al.  A simple and high production rate manufacturing method for submicron polymer fibres , 2011, Journal of tissue engineering and regenerative medicine.

[65]  A. Fuentes,et al.  Experimental study of nanofiber production through forcespinning , 2013 .

[66]  Li Wang,et al.  Hypercrosslinked polystyrene microspheres with bimodal pore size distribution and controllable macroporosity , 2010 .