Numerical treatment of fractional heat equations

This paper is devoted to the numerical treatment of some fractional extensions of the temperature field problem in oil strata. Based on the Grunwald-Letnikov's definition of a fractional derivative, finite difference schemes for the approximation of the solution are discussed. By means of them the fractional heat equation is solved. The main properties of the explicit and implicit numerical methods developed, related to stability, convergence and error behaviour are also studied. Stability conditions as extensions of the CLF condition are derived and numerical experiments are provided.

[1]  O. Agrawal,et al.  Numerical Scheme for the Solution of Fractional Differential Equations of Order Greater Than 1 , 2005 .

[2]  Shyam L. Kalla,et al.  Some boundary value problems of temperature fields in oil strata , 2003, Appl. Math. Comput..

[3]  B. Henry,et al.  The accuracy and stability of an implicit solution method for the fractional diffusion equation , 2005 .

[4]  Mark M. Meerschaert,et al.  A second-order accurate numerical method for the two-dimensional fractional diffusion equation , 2007, J. Comput. Phys..

[5]  L. Boyadjiev Some Fractional Extensions of the Temperature Field Problem in Oil Strata , 2007 .

[6]  N. Ford,et al.  Pitfalls in fast numerical solvers for fractional differential equations , 2006 .

[7]  K. Miller,et al.  An Introduction to the Fractional Calculus and Fractional Differential Equations , 1993 .

[8]  F. Mainardi The fundamental solutions for the fractional diffusion-wave equation , 1996 .

[9]  I. Podlubny Fractional differential equations : an introduction to fractional derivatives, fractional differential equations, to methods of their solution and some of their applications , 1999 .

[10]  N. Ford,et al.  A Predictor-Corrector Approach for the Numerical Solution of Fractional Differential Equations , 2013 .

[11]  橋本 英典,et al.  A. Erdelyi, W. Magnus, F. Oberhettinger and F. G. Tricomi ; Higher Transcendental Functions, Vols. I, II, III. McGraw-Hill, New York-Toronto-London, 1953, 1953, 1955. xxvi+302, xvii+396, xvii+292頁. 16×23.5cm. $6.50, $7.50, $6.50. , 1955 .

[12]  I. Podlubny Fractional differential equations , 1998 .

[13]  Alan D. Freed,et al.  Detailed Error Analysis for a Fractional Adams Method , 2004, Numerical Algorithms.

[14]  W. Schneider,et al.  Fractional diffusion and wave equations , 1989 .

[15]  H. Grauert,et al.  Differential- und Integralrechnung II , 1968 .

[16]  D. F. Hays,et al.  Table of Integrals, Series, and Products , 1966 .

[17]  O. Marichev,et al.  Fractional Integrals and Derivatives: Theory and Applications , 1993 .

[18]  J. Crank Tables of Integrals , 1962 .

[19]  Mark M. Meerschaert,et al.  A second-order accurate numerical approximation for the fractional diffusion equation , 2006, J. Comput. Phys..

[20]  H. Srivastava,et al.  Theory and Applications of Fractional Differential Equations , 2006 .

[21]  Pankaj Kumar,et al.  An approximate method for numerical solution of fractional differential equations , 2006, Signal Process..

[22]  R. Hilfer Applications Of Fractional Calculus In Physics , 2000 .

[23]  Shyam L. Kalla,et al.  On the Lauwerier formulation of the temperature field problem in oil strata , 2005, Int. J. Math. Math. Sci..

[24]  J. W. Thomas Numerical Partial Differential Equations: Finite Difference Methods , 1995 .

[25]  N. Ford,et al.  Numerical Solution of the Bagley-Torvik Equation , 2002, BIT Numerical Mathematics.

[26]  Rémi Vaillancourt,et al.  Applied Integral Transforms , 1993 .

[27]  A. Erdélyi,et al.  Higher Transcendental Functions , 1954 .

[28]  H. Schwetlick G. M. Fichtenholz, Differential‐ und Integralrechnung III. (Hochschulbücher für Mathematik, Band 63.) 640 S. m. 145 Abb. Berlin 1967. Deutscher Verlag der Wissenschaften. Preis geb. 30,30 M , 1969 .