다중모델을 이용한 자동차 보험 고객의 이탈예측

데이터마이닝은 우리가 완벽하게 알고 있지 못하는 데이터 집합으로부터 알려지지 않은 사실이나 규칙을 찾아내는 작업이기 때문에 항상 높은 오류율의 위험에 처해 있다. 다중모델은 하나의 문제에 다수의 모델을 사용함으로써 오류율을 줄이고자 하는 접근 방법이다. 본 연구에서는 데이터마이닝의 예측 성능을 개선시킬 수 있는 새로운 방식의 다중모델을 제시한다. 이 다중모델은 입력사례의 특성에 따라 그에 적합하게 개발된 모델이 선정되어 적용되는 특징을 가지고 있다. 제시된 다중모델의 현실적인 성능 검증을 위해 국내 자동차 보험 가입 고객의 이탈 예측 문제에 적용하여, 그 결과를 단일모델의 결과와 비교 평가하였다. 비교 대상 단일모델로는, 사례기반추론, 인공신경망, 의사결정나무 등이 사용되었는데, 다중모델의 예측 성능이 어떤 단일모델의 예측 성능보다 우수한 것으로 나타났다.