On the numerical solution of stochastic oscillators driven by time-varying and random forces

In this work, we provide a specific trigonometric stochastic numerical method for linear oscillators with high constant frequencies, driven by a nonlinear time-varying force and a random force. We present some theoretical considerations and numerical experiments on popular related physical models.

[1]  J. C. Jimenez,et al.  Locally Linearized methods for the simulation of stochastic oscillators driven by random forces , 2017 .

[2]  Desmond J. Higham,et al.  An Algorithmic Introduction to Numerical Simulation of Stochastic Differential Equations , 2001, SIAM Rev..

[3]  T. Faniran Numerical Solution of Stochastic Differential Equations , 2015 .

[4]  M. Hochbruck,et al.  Exponential integrators , 2010, Acta Numerica.

[6]  David Cohen,et al.  On the numerical discretisation of stochastic oscillators , 2012, Math. Comput. Simul..

[7]  Oscillator Subject to Periodic and Random Forces , 2013 .

[8]  Jean-François Richard,et al.  Methods of Numerical Integration , 2000 .

[9]  Kevin Burrage,et al.  Numerical Methods for Second-Order Stochastic Differential Equations , 2007, SIAM J. Sci. Comput..

[10]  David Cohen,et al.  Convergence analysis of trigonometric methods for stiff second-order stochastic differential equations , 2012, Numerische Mathematik.

[11]  Moshe Gitterman,et al.  The noisy oscillator : the first hundred years, from Einstein until now , 2005 .

[12]  R. D'Ambrosio,et al.  Numerical preservation of long-term dynamics by stochastic two-step methods , 2018 .

[13]  E. Hairer,et al.  Geometric Numerical Integration , 2022, Oberwolfach Reports.

[14]  Desmond J. Higham,et al.  Numerical simulation of a linear stochastic oscillator with additive noise , 2004 .

[15]  Adi R. Bulsara,et al.  Spectral analysis of a nonlinear oscillator driven by random and periodic forces. I. Linearized theory , 1982 .

[16]  M. J. Senosiain,et al.  A review on numerical schemes for solving a linear stochastic oscillator , 2015 .

[17]  R. D'Ambrosio,et al.  On the numerical structure preservation of nonlinear damped stochastic oscillators , 2020, Numerical Algorithms.

[18]  Kevin Burrage,et al.  Accurate Stationary Densities with Partitioned Numerical Methods for Stochastic Differential Equations , 2009, SIAM J. Numer. Anal..

[19]  Gilles Vilmart,et al.  Weak Second Order Multirevolution Composition Methods for Highly Oscillatory Stochastic Differential Equations with Additive or Multiplicative Noise , 2014, SIAM J. Sci. Comput..

[20]  Navaratnam Sri Namachchivaya,et al.  Random perturbations of a periodically driven nonlinear oscillator: escape from a resonance zone , 2015, 1510.08919.

[21]  L. Einkemmer Structure preserving numerical methods for the Vlasov equation , 2016, 1604.02616.