Constraint effects on the ductile-to-brittle transition temperature of ferritic steels: a Weibull stress model

This study examines crack front length and constraint loss effects on cleavage fracture toughness in ferritic steels at temperatures in the ductile-to-brittle transition region. A local approach for fracture at the micro-scale of the material based on the Weibull stress is coupled with very detailed three-dimensional models of deep-notch bend specimens. A new non-dimensional function g(M) derived from the Weibull stress density describes the overall constraint level in a specimen. This function remains identical for all geometrically similar specimens regardless of their absolute sizes, and thus provides a computationally simple approach to construct (three-dimensional) fracture driving force curves σwvs.J, for each absolute size of interest. Proposed modifications of the conventional, two-parameter Weibull stress expression for cumulative failure probability introduce a new threshold parameter σw−min. This parameter has a simple calibration procedure requiring no additional experimental data. The use of a toughness scaling model including σw−min>0 increases the deformation level at which the CVN size specimen loses constraint compared to a 1T SE(B) specimen, which improves the agreement of computational predictions and experimental estimations. Finally the effects of specimen size and constraint loss on the cleavage fracture reference temperature T0 as determined using the new standard ASTM E1921 are investigated using Monte Carlo simulation together with the new toughness scaling model.

[1]  Robert H. Dodds,et al.  Specimen Size Requirements for Fracture Toughness Testing in the Transition Region , 1991 .

[2]  K. Wallin,et al.  Fracture Toughness Transition Curve Shape for Ferritic Structural Steels , 1991 .

[3]  M. Toyoda,et al.  A statistical approach for fracture of brittle materials based on the chain-of-bundles model , 1995 .

[4]  A. J. Carlsson,et al.  Influence of non-singular stress terms and specimen geometry on small-scale yielding at crack tips in elastic-plastic materials , 1973 .

[5]  Andrew H. Sherry,et al.  Local Approach to Fracture Applied to Reactor Pressure Vessel : Synthesis of a Cooperative Programme Between EDF, CEA, Framatome and AEA , 1996 .

[6]  Robert H. Dodds,et al.  A framework to correlate a/W ratio effects on elastic-plastic fracture toughness (Jc) , 1991 .

[7]  William H. Press,et al.  Numerical Recipes: FORTRAN , 1988 .

[8]  Anthony G. Evans,et al.  A statistical model of brittle fracture by transgranular cleavage , 1986 .

[9]  Claudio Ruggieri,et al.  Calibration of Weibull stress parameters using fracture toughness data , 1998 .

[10]  M. Williams,et al.  On the Stress Distribution at the Base of a Stationary Crack , 1956 .

[11]  Kim Wallin,et al.  Statistical model for carbide induced brittle fracture in steel , 1984 .

[12]  G. T. Hahn,et al.  The Influence of Microstructure on Brittle Fracture Toughness , 1984 .

[13]  Stanley T. Rolfe,et al.  Effects of crack depth on elastic-plastic fracture toughness , 1991 .

[14]  B. Moran,et al.  A general treatment of crack tip contour integrals , 1987 .

[15]  C. J. McMahon,et al.  Initiation of cleavage in polycrystalline iron , 1965 .

[16]  T. Hughes Generalization of selective integration procedures to anisotropic and nonlinear media , 1980 .

[17]  Arne S. Gullerud,et al.  WARP3D-Release 10.8: Dynamic Nonlinear Analysis of Solids using a Preconditioned Conjugate Gradient Software Architecture , 1998 .

[18]  C. Shih,et al.  Ductile crack growth−III. Transition to cleavage fracture incorporating statistics , 1996 .

[19]  Claudio Ruggieri,et al.  Numerical evaluation of probabilistic fracture parameters using WSTRESS , 1998 .

[20]  M. R. Goldthorpe,et al.  The Effect of Temperature and Specimen Geometry on the Parameters of the "Local Approach" to Cleavage Fracture , 1996 .

[21]  Fong Shih,et al.  Analysis of ductile to cleavage transition in part‐through cracks using a cell model incorporating statistics , 1999 .

[22]  K. W. Schuler,et al.  Shock pulse attenuation in a nonlinear viscoelastic solid , 1973 .

[23]  J. Rice,et al.  Limitations to the small scale yielding approximation for crack tip plasticity , 1974 .

[24]  Robert H. Dodds,et al.  Numerical investigation of 3-D constraint effects on brittle fracture in SE(B) and C(T) specimens , 1996 .

[25]  A. Pineau,et al.  A local criterion for cleavage fracture of a nuclear pressure vessel steel , 1983 .

[26]  D Stienstra,et al.  A Theoretical Framework for Addressing Fracture in the Ductile-Brittle Transition Region , 1994 .

[27]  L. Cheng,et al.  Transition from ductile tearing to cleavage fracture: A cell-model approach , 1997 .

[28]  Claudio Ruggieri,et al.  A transferability model for brittle fracture including constraint and ductile tearing effects: a probabilistic approach , 1996 .

[29]  F. Mudry,et al.  A local approach to cleavage fracture , 1987 .

[30]  K Wallin,et al.  Statistical Aspects of Constraint with Emphasis on Testing and Analysis of Laboratory Specimens in the Transition Region , 1993 .

[31]  R. H. Dodds,et al.  Loading rate effects on cleavage fracture of pre-cracked CVN specimens: 3-D studies , 1997 .

[32]  Kim Wallin,et al.  Constraint effects on reference temperature, T0, for ferritic steels in the transition region , 1998 .

[33]  Paul T. Williams,et al.  Evaluation of constraint methodologies applied to a shallow-flaw cruciform bend specimen tested under biaxial loading conditions , 1998 .

[34]  D. Munz,et al.  Estimation procedure for the Weibull parameters used in the local approach , 1992, International Journal of Fracture.

[35]  Kim Wallin,et al.  The scatter in KIC-results , 1984 .