Semiprognostic Tests of Cumulus Parameterization Schemes in the Middle Latitudes

Abstract In this paper, we consider three disparate classes of cumulus parameterization schemes, applied to cases of severe midlatitude convective storms observed during SESAME-1979. Objective analysis of the observed data was carded out and verifying heat and moisture budgets were computed. For the three types of schemes–Arakawa-Schubert, KreitzbM-Perkey, and Kuo–the underlying closure assumptions and cloud models are tested within the generalized framework of dynamic control, static control, and feedback. Using the semiprognostic approach, single time step predictions of the heating and drying rates due to convection are obtained for the three schemes and are compared with those diagnosed from the observed budgets. The results presented should have important implications for models with a resolution of more than 1 80 km. The vertical distributions of warming and drying are fairly well reproduced by the Arakawa-Schubert scheme, however, excessive amounts are predicted in most of the lower troposphere and...