New efficient and practical verifiable multi-secret sharing schemes

In 2006, Zhao et al. proposed a practical verifiable multi-secret sharing based on Yang et al.'s and Feldman's schemes. In this paper we propose two efficient, computationally secure (t,n), and verifiable multi-secret sharing schemes based on homogeneous linear recursion. The first scheme has the advantage of better performance, a new simple construction and various techniques for the reconstruction phase. The second scheme requires fewer public values with respect to Zhao et al.'s and Shao and Cao schemes. These schemes are easy to implement and provide great capabilities for many applications.

[1]  Miroslav Morháč An iterative error-free algorithm to solve Vandermonde systems , 2001, Appl. Math. Comput..

[2]  L. Harn Efficient sharing (broadcasting) of multiple secrets , 1995 .

[3]  Baruch Awerbuch,et al.  Verifiable secret sharing and achieving simultaneity in the presence of faults , 1985, 26th Annual Symposium on Foundations of Computer Science (sfcs 1985).

[4]  Douglas R. Stinson,et al.  Cryptography: Theory and Practice,Second Edition , 2002 .

[5]  Sorin Iftene,et al.  General Secret Sharing Based on the Chinese Remainder Theorem with Applications in E-Voting , 2007, ICS@SYNASC.

[6]  Douglas R. Stinson,et al.  Cryptography: Theory and Practice , 1995 .

[7]  Paul Feldman,et al.  A practical scheme for non-interactive verifiable secret sharing , 1987, 28th Annual Symposium on Foundations of Computer Science (sfcs 1987).

[8]  Massoud Hadian Dehkordi,et al.  An efficient threshold verifiable multi-secret sharing , 2008, Comput. Stand. Interfaces.

[9]  Rong Zhao,et al.  A practical verifiable multi-secret sharing scheme , 2007, Comput. Stand. Interfaces.

[10]  Dieter Gollmann,et al.  Secret Sharing with Reusable Polynomials , 1997, ACISP.

[11]  Ali Aydin Selçuk,et al.  Threshold cryptography based on Asmuth-Bloom secret sharing , 2007, Inf. Sci..

[12]  Chin-Chen Chang,et al.  A novel efficient (t, n) threshold proxy signature scheme , 2006, Inf. Sci..

[13]  Lakhmi C. Jain,et al.  Multiuser-based shadow watermark extraction system , 2007, Inf. Sci..

[14]  Adi Shamir,et al.  How to share a secret , 1979, CACM.

[15]  Ed Dawson,et al.  Multistage secret sharing based on one-way function , 1994 .

[16]  Chin-Chen Chang,et al.  An on-line secret sharing scheme for multi-secrets , 1998, Comput. Commun..

[17]  Yen-Ping Chu,et al.  A multiple-level visual secret-sharing scheme without image size expansion , 2007, Inf. Sci..

[18]  Ali Aydin Selçuk,et al.  Threshold Cryptography Based on Asmuth-Bloom Secret Sharing , 2006, ISCIS.

[19]  B. C. Brookes,et al.  Information Sciences , 2020, Cognitive Skills You Need for the 21st Century.

[20]  Zhenfu Cao,et al.  A new efficient (t, n) verifiable multi-secret sharing (VMSS) based on YCH scheme , 2005, Appl. Math. Comput..

[21]  Chin-Chen Chang,et al.  A scheme for threshold multi-secret sharing , 2005, Appl. Math. Comput..

[22]  J. He,et al.  Multisecret-sharing scheme based on one-way function , 1995 .

[23]  Å. Björck,et al.  Solution of Vandermonde Systems of Equations , 1970 .

[24]  G. R. BLAKLEY Safeguarding cryptographic keys , 1979, 1979 International Workshop on Managing Requirements Knowledge (MARK).

[25]  Min-Shiang Hwang,et al.  A (t, n) multi-secret sharing scheme , 2004, Appl. Math. Comput..

[26]  Hung-Yu Chien,et al.  A Practical ( t , n ) Multi-Secret Sharing Scheme , 2000 .

[27]  Liangliang Xiao,et al.  Linear multi-secret sharing schemes based on multi-party computation , 2006, Finite Fields Their Appl..

[28]  G. Winskel What Is Discrete Mathematics , 2007 .

[29]  Xiaoqing Tan,et al.  A New (t, n) Multi-Secret Sharing Scheme , 2008 .