Investigating the micro-rheology of the vitreous humor using an optically trapped local probe

We demonstrate that an optically trapped silica bead can be used as a local probe to measure the micro-rheology of the vitreous humor. The Brownian motion of the bead was observed using a fast camera and the micro-rheology determined by analysis of the time-dependent mean-square displacement of the bead. We observed regions of the vitreous that showed different degrees of viscoelasticity, along with the homogeneous and inhomogeneous nature of different regions. The motivation behind this study is to understand the vitreous structure, in particular changes due to aging, allowing more confident prediction of pharmaceutical drug behavior and delivery within the vitreous humor.

[1]  Jonathan M. Cooper,et al.  Microrheology with optical tweezers: data analysis , 2012 .

[2]  Xinxin Li,et al.  Integrated microcantilevers for high-resolution sensing and probing , 2012 .

[3]  John M. Girkin,et al.  The viscoelastic properties of the vitreous humor measured using an optically trapped local probe , 2011, NanoScience + Engineering.

[4]  Clive G. Wilson,et al.  Effects of vitreous liquefaction on the intravitreal distribution of sodium fluorescein, fluorescein dextran, and fluorescent microparticles. , 2011, Investigative ophthalmology & visual science.

[5]  Graham M. Gibson,et al.  Optical tweezers: wideband microrheology , 2010, 1005.1401.

[6]  Miles J Padgett,et al.  Measuring storage and loss moduli using optical tweezers: broadband microrheology. , 2009, Physical review. E, Statistical, nonlinear, and soft matter physics.

[7]  Jonathan Leach,et al.  Measuring the accuracy of particle position and force in optical tweezers using high-speed video microscopy. , 2008, Optics express.

[8]  Carlos E. Castro,et al.  Passive and active microrheology with optical tweezers , 2007 .

[9]  Mario Fischer,et al.  Calibration of trapping force and response function of optical tweezers in viscoelastic media , 2007 .

[10]  A. Ciferri,et al.  The vitreous gel: a composite structured network engineered by Nature , 2007 .

[11]  D A Weitz,et al.  Microrheology probes length scale dependent rheology. , 2006, Physical review letters.

[12]  Sabato Fusco,et al.  Viscosity measurements on micron-size scale using optical tweezers , 2005 .

[13]  Rupak K Banerjee,et al.  Evaluation of coupled convective-diffusive transport of drugs administered by intravitreal injection and controlled release implant. , 2005, Journal of controlled release : official journal of the Controlled Release Society.

[14]  T. Waigh Microrheology of complex fluids , 2005 .

[15]  J. Sebag,et al.  Age-related changes in human vitreous structure , 2005, Graefe's Archive for Clinical and Experimental Ophthalmology.

[16]  F. Bettelheim,et al.  Regional mapping of molecular components of human liquid vitreous by dynamic light scattering. , 2004, Experimental eye research.

[17]  H. Rubinsztein-Dunlop,et al.  Optical microrheology using rotating laser-trapped particles. , 2004, Physical review letters.

[18]  W. Jongebloed,et al.  The cisternal anatomy of the vitreous body , 1987, Documenta Ophthalmologica.

[19]  R. Banerjee,et al.  Artificial vitreous replacements. , 2003, Bio-medical materials and engineering.

[20]  Miles J. Padgett,et al.  Lights, action: Optical tweezers , 2002 .

[21]  Yoshimasa Kawata,et al.  Application of laser-trapping technique for measuring the three-dimensional distribution of viscosity , 2002 .

[22]  D. Maurice,et al.  Review: practical issues in intravitreal drug delivery. , 2001, Journal of ocular pharmacology and therapeutics : the official journal of the Association for Ocular Pharmacology and Therapeutics.

[23]  P. Bishop Structural macromolecules and supramolecular organisation of the vitreous gel , 2000, Progress in Retinal and Eye Research.

[24]  Ernst H. K. Stelzer,et al.  Local viscosity probed by photonic force microscopy , 1998 .

[25]  Jerry Sebag,et al.  Macromolecular structure of the corpus vitreus , 1998 .

[26]  Mason,et al.  Optical measurements of frequency-dependent linear viscoelastic moduli of complex fluids. , 1995, Physical review letters.

[27]  L. Nicolais,et al.  The rheological behaviour of animal vitreus and its comparison with vitreal substitutes , 1994 .

[28]  M. Litt,et al.  Rheology of the vitreous body: part 3. Concentration of electrolytes, collagen and hyaluronic acid. , 1994, Biorheology.

[29]  M. Litt,et al.  Rheology of the vitreous body: Part 2. Viscoelasticity of bovine and porcine vitreous. , 1994, Biorheology.

[30]  K. Svoboda,et al.  Biological applications of optical forces. , 1994, Annual review of biophysics and biomolecular structure.

[31]  G. Buchsbaum,et al.  Rheology of the vitreous body. Part I: Viscoelasticity of human vitreous. , 1992, Biorheology.

[32]  R. L. Seltner THE VITREOUS. STRUCTURE, FUNCTION, AND PATHOBIOLOGY , 1990 .

[33]  Jerry Sebag,et al.  The Vitreous , 1989, Springer New York.

[34]  J. Sebag,et al.  Biochemistry of the Vitreous , 1989 .

[35]  S. Chu,et al.  Observation of a single-beam gradient force optical trap for dielectric particles. , 1986, Optics letters.