Contention Resolution with Constant Throughput and Log-Logstar Channel Accesses

For decades, randomized exponential backoff has provided a critical algorithmic building block in situations where multiple devices seek access to a shared resource. Despite this history, the performance of standard exponential backoff is poor under worst-case scheduling of demands on the resource: (i) subconstant throughput can occur under plausible scenarios, and (ii) each of $N$ devices requires $\Omega(\log N)$ access attempts before obtaining the resource. In this paper, we address these shortcomings by offering a new backoff protocol for a shared communication channel that guarantees expected constant throughput with only $O(\log(\log^* N))$ channel accesses in expectation, even when packet arrivals are scheduled by an adversary. Central to this result are new algorithms for approximate counting and leader election with the same performance guarantees.

[1]  Dariusz R. Kowalski,et al.  Contention Resolution in a Non-synchronized Multiple Access Channel , 2013, 2013 IEEE 27th International Symposium on Parallel and Distributed Processing.

[2]  Dariusz R. Kowalski,et al.  Scalable Wake-up of Multi-channel Single-Hop Radio Networks , 2014, OPODIS.

[3]  Ramesh K. Sitaraman,et al.  The power of two random choices: a survey of tech-niques and results , 2001 .

[4]  Grzegorz Stachowiak,et al.  Asynchronous Shared Channel , 2017, PODC.

[5]  Antonio Fernández,et al.  Unbounded Contention Resolution in Multiple-Access Channels , 2011, PODC '11.

[6]  Maxwell Young,et al.  Is Our Model for Contention Resolution Wrong?: Confronting the Cost of Collisions , 2017, SPAA.

[7]  Dariusz R. Kowalski,et al.  Fast Nonadaptive Deterministic Algorithm for Conflict Resolution in a Dynamic Multiple-Access Channel , 2015, SIAM J. Comput..

[8]  Michael A. Bender,et al.  Adversarial contention resolution for simple channels , 2005, SPAA '05.

[9]  Dariusz R. Kowalski,et al.  A better wake-up in radio networks , 2004, PODC '04.

[10]  David E. Culler,et al.  Telos: enabling ultra-low power wireless research , 2005, IPSN 2005. Fourth International Symposium on Information Processing in Sensor Networks, 2005..

[11]  Yuan Li,et al.  Energy and latency control in low duty cycle MAC protocols , 2005, IEEE Wireless Communications and Networking Conference, 2005.

[12]  Christian Scheideler,et al.  Sade: competitive MAC under adversarial SINR , 2018, Distributed Computing.

[13]  Aleksandar Kuzmanovic,et al.  Removing exponential backoff from TCP , 2008, CCRV.

[14]  A. Girotra,et al.  Performance Analysis of the IEEE 802 . 11 Distributed Coordination Function , 2005 .

[15]  Thomas Sauerwald,et al.  Balls-into-bins with nearly optimal load distribution , 2013, SPAA.

[16]  Dariusz R. Kowalski,et al.  Randomization helps to perform independent tasks reliably , 2004, Random Struct. Algorithms.

[17]  V. Jacobson,et al.  Congestion avoidance and control , 1988, CCRV.

[18]  Gordon Bell,et al.  Ethernet: Distributed Packet Switching for Local Computer Networks , 1976 .

[19]  Byung-Jae Kwak,et al.  On the Stability of Exponential Backoff , 2003, Journal of research of the National Institute of Standards and Technology.

[20]  Albert G. Greenberg,et al.  A lower bound on the time needed in the worst case to resolve conflicts deterministically in multiple access channels , 1985, JACM.

[21]  T. Moscibroda,et al.  The Worst-Case Capacity of Wireless Sensor Networks , 2007, 2007 6th International Symposium on Information Processing in Sensor Networks.

[22]  Calvin C. Newport Radio Network Lower Bounds Made Easy , 2014, DISC.

[23]  Stephan Olariu,et al.  Uniform leader election protocols for radio networks , 2001, International Conference on Parallel Processing, 2001..

[24]  Weihua Zhuang,et al.  Queue Analysis for Wireless Packet Data Traffic , 2005, NETWORKING.

[25]  Philippe Flajolet,et al.  Estimating the multiplicities of conflicts to speed their resolution in multiple access channels , 1987, JACM.

[26]  Alan M. Frieze,et al.  On Balls and Bins with Deletions , 1998, RANDOM.

[27]  Srdjan Capkun,et al.  Secure Time Synchronization in Sensor Networks , 2008, TSEC.

[28]  Ravi Rajwar,et al.  Speculative lock elision: enabling highly concurrent multithreaded execution , 2001, Proceedings. 34th ACM/IEEE International Symposium on Microarchitecture. MICRO-34.

[29]  Michael A. Bender,et al.  How to Scale Exponential Backoff: Constant Throughput, Polylog Access Attempts, and Robustness , 2016, SODA.

[30]  Leslie Ann Goldberg,et al.  Analysis of practical backoff protocols for contention resolution with multiple servers , 1996, SODA '96.

[31]  Marcus K. Weldon,et al.  The Future X Network: A Bell Labs Perspective , 2015 .

[32]  Frank Thomson Leighton,et al.  Analysis of Backoff Protocols for Multiple Access Channels , 1996, SIAM J. Comput..

[33]  Ilenia Tinnirello,et al.  Kalman filter estimation of the number of competing terminals in an IEEE 802.11 network , 2003, IEEE INFOCOM 2003. Twenty-second Annual Joint Conference of the IEEE Computer and Communications Societies (IEEE Cat. No.03CH37428).

[34]  Peter March,et al.  Stability of binary exponential backoff , 1988, JACM.

[35]  Giuseppe Anastasi,et al.  Performance measurements of motes sensor networks , 2004, MSWiM '04.

[36]  Fred B. Schneider,et al.  Implementing fault-tolerant services using the state machine approach: a tutorial , 1990, CSUR.

[37]  Michael Mitzenmacher,et al.  The Power of Two Choices in Randomized Load Balancing , 2001, IEEE Trans. Parallel Distributed Syst..

[38]  Thanasis Tsantilas,et al.  Efficient optical communication in parallel computers , 1992, SPAA '92.

[39]  Aravind Srinivasan,et al.  Contention resolution with constant expected delay , 2000, JACM.

[40]  Eli Upfal,et al.  Balanced Allocations , 1999, SIAM J. Comput..

[42]  Yves Métivier,et al.  Counting in One-Hop Beeping Networks , 2019, Theor. Comput. Sci..

[43]  Christian Scheideler,et al.  Competitive and Fair Medium Access Despite Reactive Jamming , 2011, 2011 31st International Conference on Distributed Computing Systems.

[44]  Dan E. Willard,et al.  Log-Logarithmic Selection Resolution Protocols in a Multiple Access Channel , 1986, SIAM J. Comput..

[45]  Christian Scheideler,et al.  A jamming-resistant MAC protocol for single-hop wireless networks , 2008, PODC '08.

[46]  Marek Klonowski,et al.  Approximating the Size of a Radio Network in Beeping Model , 2016, SIROCCO.

[47]  Marco Conti,et al.  Dynamic tuning of the IEEE 802.11 protocol to achieve a theoretical throughput limit , 2000, TNET.

[48]  Dariusz R. Kowalski,et al.  On the Wake-Up Problem in Radio Networks , 2005, ICALP.

[49]  Calvin C. Newport,et al.  The Computational Power of Beeps , 2015, DISC.

[50]  Deborah Estrin,et al.  Statistical model of lossy links in wireless sensor networks , 2005, IPSN 2005. Fourth International Symposium on Information Processing in Sensor Networks, 2005..

[51]  Berthold Vöcking,et al.  Balanced allocations: the heavily loaded case , 2000, STOC '00.

[52]  Maurice Herlihy,et al.  Transactional Memory: Architectural Support For Lock-free Data Structures , 1993, Proceedings of the 20th Annual International Symposium on Computer Architecture.

[53]  Fabian Kuhn,et al.  Deploying Wireless Networks with Beeps , 2010, DISC.

[54]  B. Vocking How asymmetry helps load balancing , 1999, 40th Annual Symposium on Foundations of Computer Science (Cat. No.99CB37039).

[55]  David Peleg,et al.  SINR diagrams: towards algorithmically usable SINR models of wireless networks , 2008, PODC '09.

[56]  Michael A. Bender,et al.  Contention resolution with log-logstar channel accesses , 2016, STOC.

[57]  Marco Conti,et al.  IEEE 802.11 protocol: design and performance evaluation of an adaptive backoff mechanism , 2000, IEEE Journal on Selected Areas in Communications.

[58]  Marek Chrobak,et al.  The wake-up problem in multi-hop radio networks , 2004, SODA '04.

[59]  Tomasz Jurdzinski,et al.  The Cost of Synchronizing Multiple-Access Channels , 2015, PODC.

[60]  Dariusz R. Kowalski,et al.  Adversarial Queuing on the Multiple Access Channel , 2012, TALG.

[61]  Reuven Bar-Yehuda,et al.  On the Time-Complexity of Broadcast in Multi-hop Radio Networks: An Exponential Gap Between Determinism and Randomization , 1992, J. Comput. Syst. Sci..

[62]  Charles E. Leiserson,et al.  Randomized Routing on Fat-Trees , 1989, Adv. Comput. Res..

[63]  Christian Scheideler,et al.  Competitive and fair throughput for co-existing networks under adversarial interference , 2012, PODC '12.

[64]  Calvin C. Newport,et al.  Contention Resolution on a Fading Channel , 2016, PODC.

[65]  Artur Czumaj,et al.  Multiple-Choice Balanced Allocation in (Almost) Parallel , 2012, APPROX-RANDOM.

[66]  Roger Wattenhofer,et al.  Wireless Communication Is in APX , 2009, ICALP.

[67]  Bogdan S. Chlebus,et al.  Adversarial Multiple Access Channel with Individual Injection Rates , 2009, OPODIS.

[68]  Christian Scheideler,et al.  A Jamming-Resistant MAC Protocol for Multi-Hop Wireless Networks , 2010, DISC.

[69]  Michael A. Bender,et al.  Contention Resolution with Heterogeneous Job Sizes , 2006, ESA.

[70]  Eli Upfal,et al.  Stochastic Contention Resolution With Short Delays , 1998, SIAM J. Comput..

[71]  Jie Yu,et al.  Study of the Effect of the Wireless Gateway on Incoming Self-Similar Traffic , 2006, IEEE Transactions on Signal Processing.

[72]  Dariusz R. Kowalski,et al.  Medium Access Control for Adversarial Channels with Jamming , 2011, SIROCCO.