A Quantitative Network Model for Color Categorization

To clarify the higher-order mechanism of human color perception, we measured the color appearances of 78 colored lights by an elemental color-scaling method and by a categorical color naming method. The colors covered nearly the entire CIE 1931 xy-chromaticity diagram with three different surrounds. The results showed that firm basic color zones derived by categorical color naming can be mapped with no overlap in an opponent-color response space. We propose a network model with a threshold selector, maximum selectors, and multiplication units with gain factors to generate the categorical color responses quantitatively from the elemental color responses. The model can predict the categorical color naming results in different surround conditions with no change of parameters. This suggests that a nonlinear color vision mechanism for color categorization exists between the primary visual cortex (V1) and the inferior temporal cortex (IT) in the human brain. © 2002 Wiley Periodicals, Inc. Col Res Appl, 27, 225–232, 2002; Published online in Wiley InterScience (www.interscience.wiley.com). DOI 10.1002/col.10060

[1]  K. D. De Valois,et al.  Contribution of S opponent cells to color appearance. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[2]  H. Komatsu Mechanisms of central color vision , 1998, Current Opinion in Neurobiology.

[3]  K. Fuld,et al.  Colors of monochromatic lights that vary in contrast-induced brightness. , 1985, Journal of the Optical Society of America. A, Optics and image science.

[4]  K. Uchikawa,et al.  Influence of basic color categories on color memory discrimination. , 1996 .

[5]  D. W. Heeley,et al.  Cardinal directions of color space , 1982, Vision Research.

[6]  B. Saunders,et al.  Colour: An exosomatic organ? , 1997, Behavioral and Brain Sciences.

[7]  B. Saunders,et al.  Are there nontrivial constraints on colour categorization? , 1997, Behavioral and Brain Sciences.

[8]  S. R. Butler,et al.  The effects of lesions of area V4 on the visual abilities of macaques: colour categorization , 1992, Behavioural Brain Research.

[9]  R. M. Boynton,et al.  Hue-Wavelength Relation Measured by Color-Naming Method for Three Retinal Locations , 1964, Science.

[10]  R. M. Boynton,et al.  Locating basic colors in the OSA space , 1987 .

[11]  Keiji Uchikawa,et al.  Categorized color space on CRT in the aperture and the surface color mode , 1993 .

[12]  J. Davidoff,et al.  Colour categories in a stone-age tribe , 1999, Nature.

[13]  G Sperling,et al.  Second-order reversed phi , 1999, Perception & psychophysics.

[14]  Tetsuro Matsuzawa,et al.  Colour naming and classification in a chimpanzee (Pan troglodytes) , 1985 .

[15]  R. L. Valois,et al.  A multi-stage color model , 1993, Vision Research.

[16]  Harvey S. Smallman,et al.  Category effects in color memory , 1989 .

[17]  P. Lennie,et al.  Chromatic mechanisms in striate cortex of macaque , 1990, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[18]  J. Davidoff,et al.  Color categories are not universal: replications and new evidence from a stone-age culture. , 2000, Journal of experimental psychology. General.

[19]  P. Kay,et al.  The linguistic significance of the meanings of basic color terms , 1978 .

[20]  Lindsay William Macdonald,et al.  A Cross-Cultural Colour-Naming Study. Part III-A Colour-Naming Model , 2001 .

[21]  R. M. Boynton,et al.  Categorical color perception of Japanese observers: Comparison with that of Americans , 1987, Vision Research.

[22]  J. Werner,et al.  Spectral mechanisms of spatially induced blackness: data and quantitative model. , 1997, Journal of the Optical Society of America. A, Optics, image science, and vision.

[23]  P. Lennie,et al.  Chromatic mechanisms in lateral geniculate nucleus of macaque. , 1984, The Journal of physiology.

[24]  Israel Abramov,et al.  Scaling Procedures for Specifying Color Appearance , 1988, Topical Meeting on Color Appearance.

[25]  S Yamane,et al.  Color selectivity of neurons in the inferior temporal cortex of the awake macaque monkey , 1992, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[26]  James A. Schirillo,et al.  Tutorial on the importance of color in language and culture , 2001 .

[27]  P. Kay Basic Color Terms: Their Universality and Evolution , 1969 .

[28]  Julia Sturges,et al.  Locating basic colours in the munsell space , 1995 .

[29]  J S Werner,et al.  Loci of achromatic points throughout the life span. , 1993, Journal of the Optical Society of America. A, Optics and image science.

[30]  R. Vautin,et al.  Neuronal mechanisms of color categorization in areas V1, V2 and V4 of macaque monkey visual cortex , 1996, Behavioural Brain Research.

[31]  Gunter Wyszecki Color matching at moderate to high levels of retinal illuminance: A pilot study , 1978, Vision Research.

[32]  H. Komatsu,et al.  Neural selectivity for hue and saturation of colour in the primary visual cortex of the monkey , 2000, The European journal of neuroscience.

[33]  Robert M. Boynton,et al.  Salience of chromatic basic color terms confirmed by three measures , 1990, Vision Research.

[34]  Keiji Uchikawa,et al.  Centroids of color categories compared by two methods , 1989 .

[35]  Keiji Uchikawa,et al.  Influence of achromatic surrounds on categorical perception of surface colors , 1989, Vision Research.

[36]  R. L. Valois,et al.  Hue Scaling of Isoluminant and Cone-specific Lights , 1997, Vision Research.