A compromise solution for the multiobjective stochastic linear programming under partial uncertainty

This paper solves the multiobjective stochastic linear program with partially known probability. We address the case where the probability distribution is defined by crisp inequalities. We propose a chance constrained approach and a compromise programming approach to transform the multiobjective stochastic linear program with linear partial information on probability distribution into its equivalent uniobjective problem. The resulting program is then solved using the modified L-shaped method. We illustrate our results by an example.

[1]  Fouad Ben Abdelaziz,et al.  Multistage stochastic programming with fuzzy probability distribution , 2009, Fuzzy Sets Syst..

[2]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[3]  Milan Zeleny,et al.  Multiple Criteria Decision Making (MCDM) , 2004 .

[4]  Tamás Rapcsák,et al.  New Trends in Mathematical Programming , 1998 .

[5]  Jitka Dupačová,et al.  Stochastic Programming with Incomplete Information , 1986 .

[6]  R. Benayoun,et al.  Linear programming with multiple objective functions: Step method (stem) , 1971, Math. Program..

[7]  András Prékopa,et al.  Dual method for the solution of a one-stage stochastic programming problem with random RHS obeying a discrete probability distribution , 1990, ZOR Methods Model. Oper. Res..

[8]  Willem K. Klein Haneveld,et al.  Stochastic Linear Programming Models , 1986 .

[9]  A. Prékopa,et al.  Programming Under Probabilistic Constraint with Discrete Random Variable , 1998 .

[10]  Raymond Nadeau,et al.  Stochastic MOLP with Incomplete Information: An Interactive Approach with Recourse , 1990 .

[11]  Y. Ermoliev,et al.  Stochastic Optimization Problems with Incomplete Information on Distribution Functions , 1985 .

[12]  Bruno Urli,et al.  PROMISE/scenarios: An interactive method for multiobjective stochastic linear programming under partial uncertainty , 2004, Eur. J. Oper. Res..

[13]  G. Bitran Linear Multiple Objective Problems with Interval Coefficients , 1980 .

[14]  Peter Kall,et al.  Stochastic Linear Programming , 1975 .

[15]  Jacques Teghem,et al.  “Strange” : An Interactive Method for Multiobjective Stochastic Linear Programming, and “Strange-Momix” Its Extension to Integer Variables , 1990 .

[16]  Ambrose Goicoechea,et al.  Multiple objectives under uncertainty: An illustrative application of protrade , 1979 .

[17]  Ahti Salo,et al.  Robust portfolio modeling with incomplete cost information and project interdependencies , 2008, Eur. J. Oper. Res..

[18]  Arthur P. Dempster,et al.  Upper and Lower Probabilities Induced by a Multivalued Mapping , 1967, Classic Works of the Dempster-Shafer Theory of Belief Functions.

[19]  Fouad Ben Abdelaziz,et al.  Stochastic programming with fuzzy linear partial information on probability distribution , 2005, Eur. J. Oper. Res..

[20]  Edward Kofler Linear partial information with applications , 2001, Fuzzy Sets Syst..

[21]  A. Charnes,et al.  Chance-Constrained Programming , 1959 .

[22]  Wiesław Danielak,et al.  Instytucjonalne formy wspierania przedsiębiorczości , 2001 .

[23]  R. Słowiński,et al.  Stochastic Versus Fuzzy Approaches to Multiobjective Mathematical Programming under Uncertainty , 1990, Theory and Decision Library.

[24]  Fouad Ben Abdelaziz,et al.  Multi-objective stochastic programming for portfolio selection , 2007, Eur. J. Oper. Res..

[25]  Ben Abdelaziz Foued,et al.  Application of goal programming in a multi-objective reservoir operation model in Tunisia , 2001, Eur. J. Oper. Res..