National Status Reports

[1]  P. Termonia,et al.  The CORDEX.be initiative as a foundation for climate services in Belgium , 2018, Climate Services.

[2]  E. Pottiaux,et al.  Evaluation of the atmospheric water vapor content in the regional climate model ALARO-0 using GNSS observations from EPN Repro2 , 2018 .

[3]  E. Pottiaux,et al.  Global validity and behaviour of tropospheric gradients estimated by GPS , 2018 .

[4]  O. Bock,et al.  Global IWV trends and variability in atmospheric reanalyses and GPS observations , 2018, Atmospheric Chemistry and Physics.

[5]  A. Parracho Study of trends and variability of atmospheric water vapour with climate models and observations from global gnss network , 2017 .

[6]  Pawel Wielgosz,et al.  Reduction of ZTD outliers through improved GNSS data processing and screening strategies , 2017 .

[7]  Tong Ning,et al.  Data assimilation of GNSS zenith total delays from a Nordic processing centre , 2017 .

[8]  Johannes Böhm,et al.  VMF3/GPT3: refined discrete and empirical troposphere mapping functions , 2017, Journal of Geodesy.

[9]  P. Termonia,et al.  The foundations for climate services in Belgium: CORDEX.be , 2017 .

[10]  Yibin Yao,et al.  An Improved Tomography Approach Based on Adaptive Smoothing and Ground Meteorological Observations , 2017, Remote. Sens..

[11]  O. Bock,et al.  Comparison of total water vapour content in the Arctic derived from GNSS, AIRS, MODIS and SCIAMACHY , 2017 .

[12]  E. Pottiaux,et al.  An assessment of ground‐based GNSS Zenith Total Delay observation errors and their correlations using the Met Office UKV model , 2017 .

[13]  Zhizhao Liu,et al.  Detecting Water Vapor Variability during Heavy Precipitation Events in Hong Kong Using the GPS Tomographic Technique , 2017 .

[14]  Eric Pottiaux,et al.  GPS water vapor and its comparison with radiosonde and ERA-Interim data in Algeria , 2017, Advances in Atmospheric Sciences.

[15]  O. Bock,et al.  Study on homogenization of synthetic GNSS-retrieved IWV time series and its impact on trend estimates with autoregressive noise , 2017 .

[16]  Witold Rohm,et al.  Cross-validation of GPS tomography models and methodological improvements using CORS network , 2017 .

[17]  Malte Müller,et al.  AROME-MetCoOp: A Nordic Convective-Scale Operational Weather Prediction Model , 2017 .

[18]  Shubi Zhang,et al.  New parameterized model for GPS water vapor tomography , 2017 .

[19]  Eric Pottiaux,et al.  Inter-technique validation of tropospheric slant total delays , 2017 .

[20]  Andrzej Araszkiewicz,et al.  EPN-Repro2: A reference GNSS tropospheric data set over Europe , 2016 .

[21]  Hartwig Deneke,et al.  The HD(CP)2 Observational Prototype Experiment (HOPE) - An overview , 2016 .

[22]  Eric Pottiaux,et al.  Review of the state of the art and future prospects of the ground-based GNSS meteorology in Europe , 2016 .

[23]  Zhizhao Liu,et al.  Assessing the performance of troposphere tomographic modeling using multi-source water vapor data during Hong Kong's rainy season from May to October 2013 , 2016 .

[24]  Pengfei Xia,et al.  Optimization of GPS water vapor tomography technique with radiosonde andCOSMIC historical data , 2016 .

[25]  Yibin Yao,et al.  Maximally Using GPS Observation for Water Vapor Tomography , 2016, IEEE Transactions on Geoscience and Remote Sensing.

[26]  Felix Norman Teferle,et al.  Evaluation of IWV from the numerical weather prediction WRFmodel with PPP GNSS processing for Bulgaria , 2016 .

[27]  Galina Dick,et al.  Benchmark campaign and case study episode in central Europe for development and assessment of advanced GNSS tropospheric models and products , 2016 .

[28]  Jelena Bojarova,et al.  Variational Bias Correction of GNSS ZTD in the HARMONIE Modeling System , 2016 .

[29]  Fei Yang,et al.  An Optimal Weighting Method of Global Positioning System (GPS) Troposphere Tomography , 2016, IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing.

[30]  P. Termonia,et al.  Climate impacts on agricultural biomass production in the CORDEX.be project context , 2016 .

[31]  J. Wickert,et al.  Homogenized Time Series of the Atmospheric Water Vapor Content Obtained from the GNSS Reprocessed Data , 2016 .

[32]  Mehrez Zribi,et al.  Coupling SAR C-Band and Optical Data for Soil Moisture and Leaf Area Index Retrieval Over Irrigated Grasslands , 2016, IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing.

[33]  Yibin Yao,et al.  A method to improve the utilization of GNSS observation for water vapor tomography , 2016 .

[34]  O. Bock,et al.  Screening of GPS ZTD estimates , 2016 .

[35]  Stefania Bonafoni,et al.  The usefulness of the Global Navigation Satellite Systems (GNSS) in the analysis of precipitation events , 2016 .

[36]  P. Termonia,et al.  CORDEX.be: COmbining Regional climate Downscaling EXpertise in Belgium , 2015 .

[37]  Galina Dick,et al.  The uncertainty of the atmospheric integrated water vapour estimated from GNSS observations , 2015 .

[38]  Yang Gao,et al.  Real-Time GPS Precise Point Positioning-Based Precipitable Water Vapor Estimation for Rainfall Monitoring and Forecasting , 2015, IEEE Transactions on Geoscience and Remote Sensing.

[39]  Furqan Ahmed,et al.  Assimilation of zenith total delays in the AROME France convective scale model: a recent assessment , 2015 .

[40]  Eric Pottiaux,et al.  Validity and behaviour of tropospheric gradients estimated by GPS in Corsica , 2015 .

[41]  Qile Zhao,et al.  Assessment of precipitable water vapor derived from ground-based BeiDou observations with Precise Point Positioning approach , 2015 .

[42]  Susanne Crewell,et al.  Towards a high‐resolution regional reanalysis for the European CORDEX domain , 2015 .

[43]  P. Di Girolamo,et al.  Assessment of small-scale integrated water vapour variability during HOPE , 2014 .

[44]  R. Van Malderen,et al.  A multi-site intercomparison of integrated water vapour observations for climate change analysis , 2014 .

[45]  Yanyan Liu,et al.  Near real-time water vapor tomography using ground-based GPS and meteorological data: long-term experiment in Hong Kong , 2014 .

[46]  T. Verhoelst,et al.  GNSS tomography and optimal geometrical setting to retrieve water vapour density of the neutral atmosphere , 2014 .

[47]  E. Pottiaux,et al.  Advanced multi-GNSS troposphere modeling for improved monitoring and forecasting of severe weather , 2014 .

[48]  Zhizhao Liu,et al.  Voxel-optimized regional water vapor tomography and comparison with radiosonde and numerical weather model , 2014, Journal of Geodesy.

[49]  R. Warnant,et al.  GNSS meteorology and impact on NRT position , 2014 .

[50]  Wang Xiaoying,et al.  Tropospheric wet refractivity tomography using multiplicative algebraic reconstruction technique , 2014 .

[51]  Eric Pottiaux,et al.  Advanced Global Navigation Satellite Systems Tropospheric Products for Monitoring Severe Weather Events and Climate (GNSS4SWEC) , 2014 .

[52]  Véronique Ducrocq,et al.  A GPS network for tropospheric tomography in the framework of the Mediterranean hydrometeorological observatory Cévennes-Vivarais (southeastern France) , 2013 .

[53]  Zhizhao Liu,et al.  GNSS troposphere tomography based on two-step reconstructions using GPS observations and COSMIC profiles , 2013 .

[54]  Maorong Ge,et al.  Estimating Zenith Tropospheric Delays from BeiDou Navigation Satellite System Observations , 2013, Sensors.

[55]  Gunnar Elgered,et al.  Evaluation of the atmospheric water vapor content in a regional climate model using ground‐based GPS measurements , 2013 .

[56]  Yongqiang Yu,et al.  2 Cloud and Water Vapor Feedbacks to the El Niño 3 Warming : Are They Still Biased in CMIP 5 Models ? , 2013 .

[57]  Zhizhao Liu,et al.  The First PPP-Based GPS Water Vapor Real-Time Monitoring System in Pearl-River-Delta Region, China , 2013 .

[58]  Adrian Jupp,et al.  Operational Assimilation of GPS Zenith Total Delay Observations into the Met Office Numerical Weather Prediction Models , 2012 .

[59]  Henri Caussinus,et al.  SPLIDHOM: A Method for Homogenization of Daily Temperature Observations , 2011 .

[60]  Henrik Vedel,et al.  Combination methods of tropospheric time series , 2011 .

[61]  K. Mohanakumar Stratosphere Troposphere Interactions , 2009 .

[62]  K. Mohanakumar Stratosphere Troposphere Interactions: An Introduction , 2008 .

[63]  Marie-Noëlle Bouin,et al.  Comparison of ground‐based GPS precipitable water vapour to independent observations and NWP model reanalyses over Africa , 2007 .

[64]  Henri Caussinus,et al.  Detection and correction of artificial shifts in climate series , 2004 .

[65]  M. Troller,et al.  GPS based determination of the integrated and spatially distributed water vapor in the troposphere , 2004 .

[66]  B. Soden,et al.  WATER VAPOR FEEDBACK AND GLOBAL WARMING 1 , 2003 .

[67]  Henrik Vedel,et al.  Accuracy and Variability of GPS Tropospheric Delay Measurements of Water Vapor in the Western Mediterranean , 2003 .

[68]  W. D. Hogg,et al.  Homogenization of Daily Temperatures over Canada , 2002 .

[69]  Richard B. Langley,et al.  Comparison of Measurements of Atmospheric Wet Delay by Radiosonde, Water Vapor Radiometer, GPS, and VLBI , 2001 .

[70]  V. Mendes,et al.  Modeling the neutral-atmosphere propagation delay in radiometric space techniques , 1998 .

[71]  Gunnar Elgered,et al.  Geodesy by radio interferometry - Water vapor radiometry for estimation of the wet delay , 1991 .

[72]  I. Shapiro,et al.  Geodesy by radio interferometry: Effects of atmospheric modeling errors on estimates of baseline length , 1985 .