A comparison of oceanic and continental mantle lithosphere

[1]  Yiming Li,et al.  The relationship between shear wave velocity in transverse carpal ligament and carpal tunnel pressure: A finite element analysis. , 2023, Medical engineering & physics.

[2]  S. Constable,et al.  The Nature of the Lithosphere‐Asthenosphere Boundary , 2020, Journal of Geophysical Research: Solid Earth.

[3]  M. Agius,et al.  Evolution of the Oceanic Lithosphere in the Equatorial Atlantic From Rayleigh Wave Tomography, Evidence for Small‐Scale Convection From the PI‐LAB Experiment , 2020, Geochemistry, Geophysics, Geosystems.

[4]  S. Constable,et al.  A Lithosphere‐Asthenosphere Boundary and Partial Melt Estimated Using Marine Magnetotelluric Data at the Central Middle Atlantic Ridge , 2020, Geochemistry, Geophysics, Geosystems.

[5]  K. Fischer,et al.  New Approaches to Multifrequency Sp Stacking Tested in the Anatolian Region , 2020, Journal of Geophysical Research: Solid Earth.

[6]  W. Mooney,et al.  New insights into the structural elements of the upper mantle beneath the contiguous United States from S-to-P converted seismic waves , 2020 .

[7]  D. Forsyth,et al.  Shear attenuation and anelastic mechanisms in the central Pacific upper mantle , 2020, Earth and Planetary Science Letters.

[8]  John M. MacKenzie,et al.  Construction and destruction , 2020 .

[9]  C. Wilson,et al.  The influence of spreading rate and permeability on melt focusing beneath mid-ocean ridges , 2019, Physics of the Earth and Planetary Interiors.

[10]  S. Constable,et al.  A dynamic lithosphere-asthenosphere boundary dictated by variations in melt generation and migration: Results from the PI-LAB Experiment in the Equatorial Mid Atlantic , 2019 .

[11]  P. Shearer,et al.  Imaging Upper‐Mantle Structure Under USArray Using Long‐Period Reflection Seismology , 2019, Journal of Geophysical Research: Solid Earth.

[12]  R. Walker,et al.  Destruction of the North China Craton in the Mesozoic , 2019, Annual Review of Earth and Planetary Sciences.

[13]  C. Dalton,et al.  Evidence for dehydration-modulated small-scale convection in the oceanic upper mantle from seafloor bathymetry and Rayleigh wave phase velocity , 2019, Earth and Planetary Science Letters.

[14]  R. Evans,et al.  High‐Resolution Constraints on Pacific Upper Mantle Petrofabric Inferred From Surface‐Wave Anisotropy , 2019, Journal of Geophysical Research: Solid Earth.

[15]  M. Menzies,et al.  Craton Destruction 1: Cratonic Keel Delamination Along a Weak Midlithospheric Discontinuity Layer , 2018, Journal of Geophysical Research: Solid Earth.

[16]  Jeffrey Park,et al.  On the Origin of the Upper Mantle Seismic Discontinuities , 2018, Lithospheric Discontinuities.

[17]  K. Selway Electrical Discontinuities in the Continental Lithosphere Imaged with Magnetotellurics , 2018, Lithospheric Discontinuities.

[18]  R. Kind,et al.  Perspectives of the S ‐Receiver‐Function Method to Image Upper Mantle Discontinuities , 2018, Lithospheric Discontinuities.

[19]  C. Rychert,et al.  Seismic Imaging of the Base of the Ocean Plates , 2018, Lithospheric Discontinuities.

[20]  U. Lohmann,et al.  Background Free‐Tropospheric Ice Nucleating Particle Concentrations at Mixed‐Phase Cloud Conditions , 2018, Journal of Geophysical Research: Atmospheres.

[21]  S. Goes,et al.  Thermal nature and resolution of the lithosphere–asthenosphere boundary under the Pacific from surface waves , 2018, Geophysical Journal International.

[22]  K. Fischer,et al.  The relative roles of inheritance and long-term passive margin lithospheric evolution on the modern structure and tectonic activity in the southeastern United States , 2018 .

[23]  M. Behn,et al.  Predicting Rates and Distribution of Carbonate Melting in Oceanic Upper Mantle: Implications for Seismic Structure and Global Carbon Cycling , 2018, Geophysical Research Letters.

[24]  B. Romanowicz,et al.  Multidisciplinary Constraints on the Abundance of Diamond and Eclogite in the Cratonic Lithosphere , 2018, Geochemistry, Geophysics, Geosystems.

[25]  K. Fischer,et al.  An adaptive Bayesian inversion for upper-mantle structure using surface waves and scattered body waves , 2018 .

[26]  C. Rychert,et al.  Predictions and Observations for the Oceanic Lithosphere From S‐to‐P Receiver Functions and SS Precursors , 2018, Geophysical research letters.

[27]  N. Arndt,et al.  Seismic evidence for depth-dependent metasomatism in cratons , 2018, Earth and Planetary Science Letters.

[28]  R. Dasgupta,et al.  High Pressure Phase Relations of a Depleted Peridotite Fluxed by CO2‐H2O‐Bearing Siliceous Melts and the Origin of Mid‐Lithospheric Discontinuity , 2018 .

[29]  S. Marshak,et al.  Modification of the Western Gondwana craton by plume–lithosphere interaction , 2018, Nature Geoscience.

[30]  C. Rychert,et al.  Scattered wave imaging of the oceanic plate in Cascadia , 2018, Science Advances.

[31]  K. Fischer,et al.  The Changing Face of the Lithosphere‐Asthenosphere Boundary: Imaging Continental Scale Patterns in Upper Mantle Structure Across the Contiguous U.S. With Sp Converted Waves , 2017, Geochemistry, Geophysics, Geosystems.

[32]  K. Fischer,et al.  The lithosphere–asthenosphere boundary beneath the South Island of New Zealand , 2017 .

[33]  C. Lesher,et al.  Elastic properties of silicate melts: Implications for low velocity zones at the lithosphere-asthenosphere boundary , 2017, Science Advances.

[34]  S. Miura,et al.  Evidence for frozen melts in the mid-lithosphere detected from active-source seismic data , 2017, Scientific Reports.

[35]  M. Billen Insights Into the Causes of Arc Rifting From 2‐D Dynamic Models of Subduction , 2017 .

[36]  K. Fischer,et al.  How Sharp Is the Cratonic Lithosphere‐Asthenosphere Transition? , 2017 .

[37]  B. Kennett,et al.  Interactions of multi-scale heterogeneity in the lithosphere: Australia , 2017 .

[38]  D. Lange,et al.  Structure of the oceanic lithosphere and upper mantle north of the Gloria Fault in the eastern mid‐Atlantic by receiver function analysis , 2017 .

[39]  C. Rychert,et al.  A unified continental thickness from seismology and diamonds suggests a melt-defined plate , 2017, Science.

[40]  C. Rychert,et al.  Constraints on the anisotropic contributions to velocity discontinuities at ∼60 km depth beneath the Pacific , 2017, Geochemistry, geophysics, geosystems : G(3).

[41]  F. Cammarano,et al.  Global thermal models of the lithosphere , 2017 .

[42]  T. Becker Superweak asthenosphere in light of upper mantle seismic anisotropy , 2017 .

[43]  C. Dalton,et al.  Seafloor age dependence of Rayleigh wave phase velocities in the Indian Ocean , 2017 .

[44]  R. A. Soomro,et al.  Detection of a new sub-lithospheric discontinuity in Central Europe with S-receiver functions , 2017 .

[45]  C. Rychert,et al.  Imaging Pacific lithosphere seismic discontinuities—Insights from SS precursor modeling , 2017 .

[46]  Weijia Sun,et al.  Mid‐lithosphere discontinuities beneath the western and central North China Craton , 2017 .

[47]  Louis Moresi,et al.  The structural evolution of the deep continental lithosphere , 2017 .

[48]  B. Knapmeyer‐Endrun,et al.  Upper mantle structure across the Trans-European Suture Zone imaged by S-receiver functions , 2017 .

[49]  D. Snyder,et al.  Construction and destruction of some North American cratons , 2017 .

[50]  C. Dalton,et al.  The thermal structure of cratonic lithosphere from global Rayleigh wave attenuation , 2016 .

[51]  Yasuko Takei,et al.  Polycrystal anelasticity at near‐solidus temperatures , 2016 .

[52]  B. Romanowicz,et al.  Layered structure in the upper mantle across North America from joint inversion of long and short period seismic data , 2016 .

[53]  H. Ford,et al.  Midlithospheric discontinuities and complex anisotropic layering in the mantle lithosphere beneath the Wyoming and Superior Provinces , 2016 .

[54]  T. Becker,et al.  A comparison of lithospheric thickness models , 2016, Tectonophysics.

[55]  R. Evans,et al.  High-resolution seismic constraints on flow dynamics in the oceanic asthenosphere , 2016, Nature.

[56]  M. Ritzwoller,et al.  Crustal and uppermost mantle structure beneath the United States , 2016 .

[57]  P. Audet Receiver functions using OBS data: promises and limitations from numerical modelling and examples from the Cascadia Initiative , 2016 .

[58]  Yanbin Wang,et al.  Experimental evidence supports mantle partial melting in the asthenosphere , 2016, Science Advances.

[59]  M. Shinohara,et al.  Nature of the seismic lithosphere‐asthenosphere boundary within normal oceanic mantle from high‐resolution receiver functions , 2016 .

[60]  D. Forsyth,et al.  Thermal structure and melting conditions in the mantle beneath the Basin and Range province from seismology and petrology , 2016 .

[61]  F. Pollitz,et al.  Seismic velocity structure of the crust and shallow mantle of the Central and Eastern United States by seismic surface wave imaging , 2016 .

[62]  K. Karlstrom,et al.  Distinct crustal isostasy trends east and west of the Rocky Mountain Front , 2015 .

[63]  K. Fischer,et al.  The meaning of midlithospheric discontinuities: A case study in the northern U.S. craton , 2015 .

[64]  C. Thomas,et al.  Imaging Canary Island hotspot material beneath the lithosphere of Morocco and southern Spain , 2015 .

[65]  B. Schmandt,et al.  Thermal classification of lithospheric discontinuities beneath USArray , 2015 .

[66]  B. Kennett Lithosphere–asthenosphere P-wave reflectivity across Australia , 2015 .

[67]  L. Boschi,et al.  Thermal structure, radial anisotropy, and dynamics of oceanic boundary layers , 2015 .

[68]  N. Schmerr,et al.  Characterization and Petrological Constraints of the Midlithospheric Discontinuity , 2015 .

[69]  Jeffrey Park,et al.  Mechanisms and geologic significance of the mid-lithosphere discontinuity in the continents , 2015 .

[70]  M. Miller,et al.  Lithospheric architecture beneath Hudson Bay , 2015 .

[71]  T. Furumura,et al.  Evolution of the oceanic lithosphere inferred from Po/So waves traveling in the Philippine Sea Plate , 2015 .

[72]  M. Miller,et al.  Lithospheric discontinuity structure in Alaska, thickness variations determined by Sp receiver functions , 2015 .

[73]  P. Kelemen,et al.  The seismic mid-lithosphere discontinuity , 2015 .

[74]  D. Okaya,et al.  A seismic reflection image for the base of a tectonic plate , 2015, Nature.

[75]  V. Lekić,et al.  Lithospheric structure across the California Continental Borderland from receiver functions , 2015 .

[76]  C. Dalton,et al.  Constraints on shear velocity in the cratonic upper mantle from Rayleigh wave phase velocity , 2014 .

[77]  Barbara Romanowicz,et al.  Whole-mantle radially anisotropic shear velocity structure from spectral-element waveform tomography , 2014 .

[78]  C. Dalton,et al.  Rayleigh wave phase velocities in the Atlantic upper mantle , 2014 .

[79]  A. Foster,et al.  Overtone Interference in Array‐Based Love‐Wave Phase Measurements , 2014 .

[80]  M. Long,et al.  A contrast in anisotropy across mid-lithospheric discontinuities beneath the central United States—A relic of craton formation , 2014 .

[81]  R. Allen,et al.  Seismic imaging east of the Rocky Mountains with USArray , 2014 .

[82]  S. Lebedev,et al.  Imaging the North American continent using waveform inversion of global and USArray data , 2014 .

[83]  K. Mahan,et al.  A method for mapping crustal deformation and anisotropy with receiver functions and first results from USArray , 2014 .

[84]  B. Schmandt,et al.  A sharp cratonic lithosphere-asthenosphere boundary beneath the American Midwest and its relation to mantle flow , 2014 .

[85]  K. Fischer,et al.  Contrasting lithospheric signatures across the western United States revealed by Sp receiver functions , 2014 .

[86]  K. Fischer,et al.  The lithosphere–asthenosphere boundary and the tectonic and magmatic history of the northwestern United States , 2014 .

[87]  D. Wiens,et al.  Reconciling mantle attenuation‐temperature relationships from seismology, petrology, and laboratory measurements , 2014 .

[88]  C. Beghein,et al.  Three‐dimensional variations in Love and Rayleigh wave azimuthal anisotropy for the upper 800 km of the mantle , 2014 .

[89]  Daoyuan Sun,et al.  High frequency seismic waves and slab structures beneath Italy , 2014 .

[90]  K. Fischer,et al.  Localized shear in the deep lithosphere beneath the San Andreas fault system , 2014 .

[91]  T. Nissen‐Meyer,et al.  Savani: A variable resolution whole‐mantle model of anisotropic shear velocity variations based on multiple data sets , 2014 .

[92]  V. Levin,et al.  Stratified seismic anisotropy and the lithosphere‐asthenosphere boundary beneath eastern North America , 2014 .

[93]  Jin-Hui Yang,et al.  Presence of an intralithospheric discontinuity in the central and western North China Craton: Implications for destruction of the craton , 2014 .

[94]  N. Schmerr,et al.  Changes in Seismic Anisotropy Shed Light on the Nature of the Gutenberg Discontinuity , 2014, Science.

[95]  B. Romanowicz,et al.  Inversion of receiver functions without deconvolution—application to the Indian craton , 2014 .

[96]  A. Mocquet,et al.  Oceanic lithosphere‐asthenosphere boundary from surface wave dispersion data , 2014 .

[97]  M. Miller,et al.  Craton formation: Internal structure inherited from closing of the early oceans , 2014 .

[98]  H. Terasaki,et al.  Ponded melt at the boundary between the lithosphere and asthenosphere , 2013 .

[99]  S. Lebedev,et al.  Seismic evidence for stratification in composition and anisotropic fabric within the thick lithosphere of Kalahari Craton , 2013 .

[100]  K. Priestley,et al.  The relationship between shear wave velocity, temperature, attenuation and viscosity in the shallow part of the mantle , 2013 .

[101]  D. Hasterok Global patterns and vigor of ventilated hydrothermal circulation through young seafloor , 2013 .

[102]  Barbara Romanowicz,et al.  Waveform Tomography Reveals Channeled Flow at the Base of the Oceanic Asthenosphere , 2013, Science.

[103]  R. Roberts,et al.  Scandinavia: A former Tibet? , 2013 .

[104]  R. Aster,et al.  A rootless rockies—Support and lithospheric structure of the Colorado Rocky Mountains inferred from CREST and TA seismic data , 2013 .

[105]  T. Jordan,et al.  Convergence depths of tectonic regions from an ensemble of global tomographic models , 2013 .

[106]  C. Beghein,et al.  Seismic anisotropy changes across upper mantle phase transitions , 2013 .

[107]  S. Lebedev,et al.  Global shear speed structure of the upper mantle and transition zone , 2013 .

[108]  H. Shiobara,et al.  Radially anisotropic structure beneath the Shikoku Basin from broadband surface wave analysis of ocean bottom seismometer records , 2013 .

[109]  T. Furumura,et al.  Small‐scale heterogeneities in the oceanic lithosphere inferred from guided waves , 2013 .

[110]  G. Masters,et al.  Update on CRUST1.0 - A 1-degree Global Model of Earth's Crust , 2013 .

[111]  S. Karato,et al.  Structures of the oceanic lithosphere‐asthenosphere boundary: Mineral‐physics modeling and seismological signatures , 2013 .

[112]  Cin-Ty A. Lee Geochemical/Petrologic Constraints on the Origin of Cratonic Mantle , 2013 .

[113]  R. Huismans,et al.  Low seismic velocities below mid‐ocean ridges: Attenuation versus melt retention , 2012 .

[114]  G. Rümpker,et al.  Melt infiltration of the lower lithosphere beneath the Tanzania craton and the Albertine rift inferred from S receiver functions , 2012 .

[115]  A. Levander,et al.  Evolutionary aspects of lithosphere discontinuity structure in the western U.S. , 2012 .

[116]  C. Ebinger,et al.  Volcanism in the Afar Rift sustained by decompression melting with minimal plume influence , 2012 .

[117]  J. Mechie,et al.  USArray Receiver Function Images of the Lithosphere-Asthenosphere Boundary , 2012 .

[118]  R. Kind,et al.  Seismic receiver functions and the lithosphere–asthenosphere boundary , 2012 .

[119]  Andrew A. Nyblade,et al.  Upper mantle shear wave velocity structure beneath the East African plateau: evidence for a deep, plateauwide low velocity anomaly , 2012 .

[120]  T. Tonegawa,et al.  Basal reflector under the Philippine Sea Plate , 2012 .

[121]  N. Schmerr The Gutenberg Discontinuity: Melt at the Lithosphere-Asthenosphere Boundary , 2012, Science.

[122]  S. Karato On the origin of the asthenosphere , 2012 .

[123]  J. Afonso,et al.  The effects of polybaric partial melting on density and seismic velocities of mantle restites , 2012 .

[124]  D. Helmberger,et al.  Upper mantle P velocity structure beneath the Midwestern United States derived from triplicated waveforms , 2012 .

[125]  Y. Ricard,et al.  A global shear velocity model of the upper mantle from fundamental and higher Rayleigh mode measurements , 2011 .

[126]  G. Ekström A global model of Love and Rayleigh surface wave dispersion and anisotropy, 25–250 s , 2011 .

[127]  K. Fischer,et al.  Lithospheric Thinning Beneath Rifted Regions of Southern California , 2011, Science.

[128]  P. Shearer,et al.  Imaging the lithosphere-asthenosphere boundary beneath the Pacific using SS waveform modeling , 2011 .

[129]  G. Zandt,et al.  Pervasive lower-crustal seismic anisotropy in Southern California: Evidence for underplated schists and active tectonics , 2011 .

[130]  Barbara Romanowicz,et al.  Inferring upper-mantle structure by full waveform tomography with the spectral element method , 2011 .

[131]  Cin-Ty A. Lee,et al.  Building and Destroying Continental Mantle , 2011 .

[132]  B. Romanowicz,et al.  3-D shear wave radially and azimuthally anisotropic velocity model of the North American upper mantle , 2011 .

[133]  John H. Woodhouse,et al.  S40RTS: A degree-40 shear-velocity model for the mantle from new Rayleigh wave dispersion, teleseismic traveltime and normal-mode splitting function measurements , 2011 .

[134]  Lars Stixrude,et al.  Thermodynamics of mantle minerals - II. Phase equilibria , 2011 .

[135]  H. Kawakatsu,et al.  Imaging the seismic lithosphere‐asthenosphere boundary of the oceanic plate , 2011 .

[136]  Lapo Boschi,et al.  GyPSuM: A joint tomographic model of mantle density and seismic wave speeds , 2010 .

[137]  Barbara Romanowicz,et al.  Importance of crustal corrections in the development of a new global model of radial anisotropy , 2010 .

[138]  K. Fischer,et al.  The lithosphere-asthenosphere boundary and cratonic lithospheric layering beneath Australia from Sp wave imaging , 2010 .

[139]  P. Shearer,et al.  Scattered wave imaging of the lithosphere–asthenosphere boundary , 2010 .

[140]  I. Jackson,et al.  Grainsize-sensitive viscoelastic relaxation in olivine: Towards a robust laboratory-based model for seismological application , 2010 .

[141]  Barbara Romanowicz,et al.  North American lithospheric discontinuity structure imaged by Ps and Sp receiver functions , 2010 .

[142]  D. Eaton,et al.  Formation of cratonic mantle keels by arc accretion: Evidence from S receiver functions , 2010 .

[143]  B. Romanowicz,et al.  Lithospheric layering in the North American craton , 2010, Nature.

[144]  W. Geissler,et al.  Thickness of the central and eastern European lithosphere as seen by S receiver functions , 2010 .

[145]  K. Fischer,et al.  The Lithosphere- Asthenosphere Boundary , 2010 .

[146]  S. Goes,et al.  Complex cratonic seismic structure from thermal models of the lithosphere : effects of variations in deep radiogenic heating , 2010 .

[147]  M. Hirschmann Partial melt in the oceanic low velocity zone (Invited) , 2010 .

[148]  W. Griffin,et al.  On the Vp/Vs-Mg# correlation in mantle peridotites: Implications for the identification of thermal and compositional anomalies in the upper mantle , 2010 .

[149]  A. Nyblade,et al.  ESTIMATES OF CRUSTAL AND LITHOSPHERIC THICKNESS IN SUB-SAHARAN AFRICA FROM S-WAVE RECEIVER FUNCTIONS , 2009 .

[150]  R. Evans,et al.  Geophysical Detection of Relict Metasomatism from an Archean (~3.5 Ga) Subduction Zone , 2009, Science.

[151]  James A. D. Connolly,et al.  The geodynamic equation of state: What and how , 2009 .

[152]  D. McKenzie,et al.  An analysis of young ocean depth, gravity and global residual topography , 2009 .

[153]  Dapeng Zhao,et al.  Upper-mantle velocity structure beneath the North China Craton: implications for lithospheric thinning , 2009 .

[154]  B. Holtzman,et al.  Viscous constitutive relations of solid-liquid composites in terms of grain boundary contiguity: 1. Grain boundary diffusion control model , 2009 .

[155]  B. Holtzman,et al.  Viscous constitutive relations of solid‐liquid composites in terms of grain boundary contiguity: 3. Causes and consequences of viscous anisotropy , 2009 .

[156]  T. Kanazawa,et al.  Seismic Evidence for Sharp Lithosphere-Asthenosphere Boundaries of Oceanic Plates , 2009, Science.

[157]  N. C. Peterson,et al.  Supporting Online Material Materials and Methods Som Text Figs. S1 to S11 Schemes S1 to S10 Tables S1 and S2 a Global View of the Lithosphere-asthenosphere Boundary , 2022 .

[158]  S. Fishwick,et al.  A comparison of cratonic roots through consistent analysis of seismic surface waves , 2009 .

[159]  Alan G. Jones,et al.  The elusive lithosphere–asthenosphere boundary (LAB) beneath cratons , 2009 .

[160]  D. Forsyth,et al.  Thickening of young Pacific lithosphere from high-resolution Rayleigh wave tomography: A test of the conductive cooling model , 2009 .

[161]  J. Revenaugh,et al.  Upper mantle seismic shear discontinuities of the Pacific , 2008 .

[162]  M. Behn,et al.  Implications of grain size evolution on the seismic structure of the oceanic upper mantle , 2008 .

[163]  P. Silver,et al.  Evidence for a compositional boundary within the lithospheric mantle beneath the Kalahari craton from S receiver functions , 2008 .

[164]  A. Dziewoński,et al.  Anisotropic shear‐wave velocity structure of the Earth's mantle: A global model , 2008 .

[165]  J. Korenaga,et al.  Subsidence of normal oceanic lithosphere, apparent thermal expansivity, and seafloor flattening , 2008 .

[166]  A. Dziewoński,et al.  Radially anisotropic shear velocity structure of the upper mantle globally and beneath North America , 2008 .

[167]  S. Lebedev,et al.  Seismic structure of Precambrian lithosphere: New constraints from broad-band surface-wave dispersion , 2007 .

[168]  M. Kumar,et al.  The rapid drift of the Indian tectonic plate , 2007, Nature.

[169]  D. Helmberger,et al.  Trans-Pacific upper mantle shear velocity structure , 2007 .

[170]  M. Bianchi,et al.  An S receiver function analysis of the lithospheric structure in South America , 2007 .

[171]  G. Wittlinger,et al.  Converted waves reveal a thick and layered tectosphere beneath the Kalahari super-craton , 2007 .

[172]  J. Gerald,et al.  Contrasting viscoelastic behavior of melt-free and melt-bearing olivine: Implications for the nature of grain-boundary sliding , 2006 .

[173]  R. Hilst,et al.  Global upper-mantle tomography with the automated multimode inversion of surface and S-wave forms , 2006 .

[174]  K. Priestley,et al.  Multimode surface waveform tomography of the Pacific Ocean: a closer look at the lithospheric cooling signature , 2006 .

[175]  Rongjiang Wang,et al.  The S receiver functions: synthetics and data example , 2006 .

[176]  C. Lesher,et al.  Effects of melt depletion on the density and seismic velocity of garnet and spinel lherzolite , 2006 .

[177]  K. Priestley,et al.  The thermal structure of the lithosphere from shear wave velocities , 2006 .

[178]  B. Kennett,et al.  Subduction zone guided waves and the heterogeneity structure of the subducted plate: Intensity anomalies in northern Japan , 2005 .

[179]  K. Fischer,et al.  A sharp lithosphere–asthenosphere boundary imaged beneath eastern North America , 2005, Nature.

[180]  N. Sleep EVOLUTION OF THE CONTINENTAL LITHOSPHERE , 2005 .

[181]  P. Vacher,et al.  Layered lithospheric mantle in the central Baltic Shield from surface waves and xenolith analysis , 2004 .

[182]  Jean-Claude Mareschal,et al.  Variations of surface heat flow and lithospheric thermal structure beneath the North American craton , 2004 .

[183]  Hendrik Jan van Heijst,et al.  Global transition zone tomography , 2004 .

[184]  S. Zhong,et al.  Cooling history of the Pacific lithosphere , 2003 .

[185]  D. Forsyth,et al.  Evidence for an upper mantle plume beneath the Tanzanian craton from Rayleigh wave tomography , 2003 .

[186]  Richard F. Katz,et al.  A new parameterization of hydrous mantle melting , 2003 .

[187]  D. Eaton,et al.  Upper-mantle thermochemical structure below North America from seismic–geodynamic flow models , 2003 .

[188]  B. Romanowicz,et al.  Global anisotropy and the thickness of continents , 2003, Nature.

[189]  M. Ritzwoller,et al.  Monte-Carlo inversion for a global shear-velocity model of the crust and upper mantle , 2002 .

[190]  J. Montagner Upper mantle low anisotropy channels below the Pacific Plate , 2002 .

[191]  Richard G. Gordon,et al.  Young tracks of hotspots and current plate velocities , 2002 .

[192]  B. Kennett,et al.  Anisotropy in the Australasian upper mantle from Love and Rayleigh waveform inversion , 2000 .

[193]  W. Hammond,et al.  Upper mantle seismic wave velocity' Effects of realistic partial melt geometries , 2000 .

[194]  Charles J. Ammon,et al.  Iterative deconvolution and receiver-function estimation , 1999 .

[195]  S. S. Shapiro,et al.  The continental tectosphere and Earth's long-wavelength gravity field , 1999 .

[196]  M. Bostock Mantle stratigraphy and evolution of the Slave province , 1998 .

[197]  S. Karato,et al.  Water, partial melting and the origin of the seismic low velocity and high attenuation zone in the upper mantle , 1998 .

[198]  Vadim Levin,et al.  P-SH conversions in a flat-layered medium with anisotropy of arbitrary orientation , 1997 .

[199]  H. Thybo,et al.  The Seismic 8° Discontinuity and Partial Melting in Continental Mantle , 1997, Science.

[200]  T. Jordan,et al.  Seismic structure of the upper mantle in a central Pacific corridor , 1996 .

[201]  Greg Hirth,et al.  Water in the oceanic upper mantle: implications for rheology , 1996 .

[202]  M. Doin,et al.  Thermal evolution of the oceanic lithosphere: an alternative view , 1996 .

[203]  P. H. Nixon,et al.  Stabilisation of Archaean lithospheric mantle: a Re-Os isotope study of peridotite xenoliths from th , 1995 .

[204]  E. R. Engdahl,et al.  Constraints on seismic velocities in the Earth from traveltimes , 1995 .

[205]  Greg Hirth,et al.  Experimental constraints on the dynamics of the partially molten upper mantle: Deformation in the diffusion creep regime , 1995 .

[206]  Suzanne Hurter,et al.  Heat flow from the Earth's interior: Analysis of the global data set , 1993 .

[207]  S. Stein,et al.  A model for the global variation in oceanic depth and heat flow with lithospheric age , 1992, Nature.

[208]  T. Jordan,et al.  Mantle layering from ScS reverberations: 3. The upper mantle , 1991 .

[209]  E. Parmentier,et al.  Melt extraction from the mantle beneath spreading centers , 1991 .

[210]  F. R. Boyd Compositional distinction between oceanic and cratonic lithosphere , 1989 .

[211]  D. Forsyth,et al.  The anisotropic structure of the upper mantle in the Pacific , 1989 .

[212]  Jian Lin,et al.  Mechanisms for the origin of mid‐ocean ridge axial topography: Implications for the thermal and mechanical structure of accreting plate boundaries , 1987 .

[213]  S. H. Richardson,et al.  Origin of diamonds in old enriched mantle , 1984, Nature.

[214]  D. L. Anderson,et al.  Preliminary reference earth model , 1981 .

[215]  A. Watts An analysis of Isostasy in the World''s Oceans 1 , 1978 .

[216]  Thomas H. Jordan,et al.  Composition and development of the continental tectosphere , 1978, Nature.

[217]  B. Parsons,et al.  An analysis of the variation of ocean floor bathymetry and heat flow with age , 1977 .

[218]  F. Richter Convection and the large-scale circulation of the mantle , 1973 .

[219]  Donald L. Turcotte,et al.  Finite amplitude convective cells and continental drift , 1967, Journal of Fluid Mechanics.

[220]  Satish C. Singh,et al.  Water-rich sublithospheric melt channel in the equatorial Atlantic Ocean , 2017, Nature Geoscience.

[221]  F. Gaillard,et al.  Origins of cratonic mantle discontinuities: A view from petrology, geochemistry and thermodynamic models , 2017 .

[222]  K. Fischer Crust and Lithospheric Structure - Seismological Constraints on the Lithosphere-Asthenosphere Boundary , 2015 .

[223]  S. Lebedev,et al.  Global Heterogeneity of the Lithosphere and Underlying Mantle: A Seismological Appraisal Based on Multimode Surface-Wave Dispersion Analysis, Shear-Velocity Tomography, and Tectonic Regionalization , 2015 .

[224]  D. Hasterok A heat flow based cooling model for tectonic plates , 2013 .

[225]  Simon M. Peacock,et al.  Subduction factory 1. Theoretical mineralogy, densities, seismic wave speeds, and H 2 O contents , 2003 .

[226]  G. Abers,et al.  Subduction factory 1. Theoretical mineralogy, densities, seismic wave speeds, and H2O contents: SUBDUCTION ZONE MINERALOGY AND PHYSICAL PROPERTIES , 2003 .