钙钛矿叠层太阳电池中电荷传输材料的研究进展

[1]  Jin Wen,et al.  Efficient and Thermally Stable All‐Perovskite Tandem Solar Cells Using All‐FA Narrow‐Bandgap Perovskite and Metal‐oxide‐based Tunnel Junction , 2022, Advanced Energy Materials.

[2]  G. Fang,et al.  Suppressing Phase Segregation in Wide Bandgap Perovskites for Monolithic Perovskite/Organic Tandem Solar Cells with Reduced Voltage Loss. , 2022, Small.

[3]  A. Lambertz,et al.  Conductive Passivator for Efficient Monolithic Perovskite/Silicon Tandem Solar Cell on Commercially Textured Silicon , 2022, Advanced Energy Materials.

[4]  Yongfang Li,et al.  A Low-Cost Hole Transport Layer Enables Cspbi2br Single-Junction and Tandem Perovskite Solar Cells with Record Efficiencies of 17.8% and 21.4% , 2022, SSRN Electronic Journal.

[5]  D. Abou‐Ras,et al.  Slot-Die Coated Triple-Halide Perovskites for Efficient and Scalable Perovskite/Silicon Tandem Solar Cells , 2022, ACS energy letters.

[6]  S. Liu,et al.  Modulating preferred crystal orientation for efficient and stable perovskite solar cells—From progress to perspectives , 2022, InfoMat.

[7]  Bryon W. Larson,et al.  Surface reaction for efficient and stable inverted perovskite solar cells , 2022, Nature.

[8]  Lin Mao,et al.  Fully Textured, Production‐Line Compatible Monolithic Perovskite/Silicon Tandem Solar Cells Approaching 29% Efficiency , 2022, Advanced materials.

[9]  W. Choy,et al.  Surface-reconstruction of NiOx nanocrystals makes a breakthrough in flexible solar cells , 2022, Joule.

[10]  Kári Sveinbjörnsson,et al.  Monolithic Perovskite/Silicon Tandem Solar Cell with 28.7% Efficiency Using Industrial Silicon Bottom Cells , 2022, ACS Energy Letters.

[11]  Dong Suk Kim,et al.  Ion-modulated radical doping of spiro-OMeTAD for more efficient and stable perovskite solar cells , 2022, Science.

[12]  Xingwang Zhang,et al.  Inactive (PbI2)2RbCl stabilizes perovskite films for efficient solar cells , 2022, Science.

[13]  Jingjing Liu,et al.  A Two-Step Solution-Processed Wide-Bandgap Perovskite for Monolithic Silicon-Based Tandem Solar Cells with >27% Efficiency , 2022, ACS Energy Letters.

[14]  A. Tiwari,et al.  High‐Performance Flexible All‐Perovskite Tandem Solar Cells with Reduced VOC‐Deficit in Wide‐Bandgap Subcell , 2022, Advanced Energy Materials.

[15]  Dewei Zhao,et al.  A universal close-space annealing strategy towards high-quality perovskite absorbers enabling efficient all-perovskite tandem solar cells , 2022, Nature Energy.

[16]  C. McNeill,et al.  Organic Solar Cell With Efficiency Over 20% and V OC Exceeding 2.1 V Enabled by Tandem With All‐Inorganic Perovskite and Thermal Annealing‐Free Process , 2022, Advanced science.

[17]  Zhengshan J. Yu,et al.  Defect engineering in wide-bandgap perovskites for efficient perovskite–silicon tandem solar cells , 2022, Nature Photonics.

[18]  A. Jen,et al.  Efficient and Stable Tin Perovskite Solar Cells by Pyridine‐Functionalized Fullerene with Reduced Interfacial Energy Loss , 2022, Advanced Functional Materials.

[19]  Likun Wang,et al.  Surface redox engineering of vacuum-deposited NiOx for top-performance perovskite solar cells and modules , 2022, Joule.

[20]  B. Richards,et al.  Scalable two-terminal all-perovskite tandem solar modules with a 19.1% efficiency , 2022, Nature Energy.

[21]  Thomas G. Allen,et al.  Monolithic Perovskite/Silicon Tandem Photovoltaics with Minimized Cell-to-Module Losses by Refractive-Index Engineering , 2022, ACS Energy Letters.

[22]  Thomas G. Allen,et al.  Efficient and stable perovskite-silicon tandem solar cells through contact displacement by MgFx , 2022, Science.

[23]  B. Rech,et al.  Field Effect Passivation in Perovskite Solar Cells by a LiF Interlayer , 2022, Advanced Energy Materials.

[24]  Samuel A. Johnson,et al.  Carrier control in Sn–Pb perovskites via 2D cation engineering for all-perovskite tandem solar cells with improved efficiency and stability , 2022, Nature Energy.

[25]  M. Saidaminov,et al.  Flexible all-perovskite tandem solar cells approaching 25% efficiency with molecule-bridged hole-selective contact , 2022, Nature Energy.

[26]  U. Paetzold,et al.  Monolithic Two-Terminal Perovskite/CIS Tandem Solar Cells with Efficiency Approaching 25% , 2022, ACS energy letters.

[27]  S. Liu,et al.  Alkyl Diamine-Induced (100)-Preferred Crystal Orientation for Efficient Pb–Sn Perovskite Solar Cells , 2022, ACS Applied Energy Materials.

[28]  Thomas G. Allen,et al.  Photoactivated p-Doping of Organic Interlayer Enables Efficient Perovskite/Silicon Tandem Solar Cells , 2022, ACS Energy Letters.

[29]  H. Snaith,et al.  Scalable processing for realizing 21.7%-efficient all-perovskite tandem solar modules , 2022, Science.

[30]  Wei Han,et al.  CsPbCl3‐Cluster‐Widened Bandgap and Inhibited Phase Segregation in a Wide‐Bandgap Perovskite and its Application to NiOx‐Based Perovskite/Silicon Tandem Solar Cells , 2022, Advanced materials.

[31]  Zhen Li,et al.  Organometallic-functionalized interfaces for highly efficient inverted perovskite solar cells , 2022, Science.

[32]  C. Brabec,et al.  Steric Engineering Enables Efficient and Photostable Wide‐Bandgap Perovskites for All‐Perovskite Tandem Solar Cells , 2022, Advanced materials.

[33]  Zhiwen Qiu,et al.  Strain Modulation for Light‐Stable n–i–p Perovskite/Silicon Tandem Solar Cells , 2022, Advanced materials.

[34]  Zhike Liu,et al.  Record‐Efficiency Flexible Perovskite Solar Cells Enabled by Multifunctional Organic Ions Interface Passivation , 2022, Advanced materials.

[35]  Shangfeng Yang,et al.  Ligand‐Anchoring‐Induced Oriented Crystal Growth for High‐Efficiency Lead‐Tin Perovskite Solar Cells , 2022, Advanced Functional Materials.

[36]  D. Hertel,et al.  Perovskite–organic tandem solar cells with indium oxide interconnect , 2022, Nature.

[37]  Shangfeng Yang,et al.  Proton‐transfer‐induced in situ defect passivation for highly efficient wide‐bandgap inverted perovskite solar cells , 2022, InfoMat.

[38]  M. Topič,et al.  Perovskite/CIGS Tandem Solar Cells: From Certified 24.2% toward 30% and Beyond , 2022, ACS Energy Letters.

[39]  Guozhen Liu,et al.  A Selective Targeting Anchor Strategy Affords Efficient and Stable Ideal‐Bandgap Perovskite Solar Cells , 2022, Advanced materials.

[40]  Jinsong Huang,et al.  Gradient Doping in Sn–Pb Perovskites by Barium Ions for Efficient Single‐Junction and Tandem Solar Cells , 2022, Advanced materials.

[41]  A. Jen,et al.  Homogeneous Grain Boundary Passivation in Wide‐Bandgap Perovskite Films Enables Fabrication of Monolithic Perovskite/Organic Tandem Solar Cells with over 21% Efficiency , 2022, Advanced Functional Materials.

[42]  Xiaodong Li,et al.  Constructing heterojunctions by surface sulfidation for efficient inverted perovskite solar cells , 2022, Science.

[43]  Thomas G. Allen,et al.  Mechanical Reliability of Fullerene/Tin Oxide Interfaces in Monolithic Perovskite/Silicon Tandem Cells , 2022, ACS Energy Letters.

[44]  Md Ashiqur Rahman Laskar,et al.  Interface Engineering of Pb–Sn Low‐Bandgap Perovskite Solar Cells for Improved Efficiency and Stability , 2022, Solar RRL.

[45]  Dong Suk Kim,et al.  Conformal quantum dot–SnO2 layers as electron transporters for efficient perovskite solar cells , 2022, Science.

[46]  A. Ng,et al.  Monolithic perovskite/organic tandem solar cells with 23.6% efficiency enabled by reduced voltage losses and optimized interconnecting layer , 2022, Nature Energy.

[47]  L. Meng,et al.  Constructing Monolithic Perovskite/Organic Tandem Solar Cell with Efficiency of 22.0% via Reduced Open‐Circuit Voltage Loss and Broadened Absorption Spectra , 2022, Advanced materials.

[48]  Jia Zhu,et al.  All-perovskite tandem solar cells with improved grain surface passivation , 2022, Nature.

[49]  K. Catchpole,et al.  Centimetre-scale perovskite solar cells with fill factors of more than 86 per cent , 2022, Nature.

[50]  K. Catchpole,et al.  27.6% Perovskite/c‐Si Tandem Solar Cells Using Industrial Fabricated TOPCon Device , 2022 .

[51]  V. Zardetto,et al.  Monolithic All‐Perovskite Tandem Solar Cells with Minimized Optical and Energetic Losses , 2021, Advanced materials.

[52]  K. Sun,et al.  Simultaneous Interfacial Modification and Crystallization Control by Biguanide Hydrochloride for Stable Perovskite Solar Cells with PCE of 24.4% , 2021, Advanced materials.

[53]  Bryon W. Larson,et al.  Metastable Dion-Jacobson 2D structure enables efficient and stable perovskite solar cells , 2021, Science.

[54]  Xiaodang Zhang,et al.  Wide Bandgap Interface Layer Induced Stabilized Perovskite/Silicon Tandem Solar Cells with Stability over Ten Thousand Hours , 2021, Advanced Energy Materials.

[55]  Zhou Liu,et al.  Thermally Stable All-Perovskite Tandem Solar Cells Fully Using Metal Oxide Charge Transport Layers and Tunnel Junction , 2021 .

[56]  Yongfang Li,et al.  Surface Reconstruction for Stable Monolithic All‐Inorganic Perovskite/Organic Tandem Solar Cells with over 21% Efficiency , 2021, Advanced Functional Materials.

[57]  Kwang Soo Kim,et al.  Perovskite solar cells with atomically coherent interlayers on SnO2 electrodes , 2021, Nature.

[58]  Oskar J. Sandberg,et al.  Tuning of the Interconnecting Layer for Monolithic Perovskite/Organic Tandem Solar Cells with Record Efficiency Exceeding 21. , 2021, Nano letters.

[59]  Furkan H. Isikgor,et al.  Linked Nickel Oxide/Perovskite Interface Passivation for High‐Performance Textured Monolithic Tandem Solar Cells , 2021, Advanced Energy Materials.

[60]  Lingling Yan,et al.  Composite electron transport layer for efficient N-I-P type monolithic perovskite/silicon tandem solar cells with high open-circuit voltage , 2021, Journal of Energy Chemistry.

[61]  Xiaoji G. Xu,et al.  Liquid medium annealing for fabricating durable perovskite solar cells with improved reproducibility , 2021, Science.

[62]  B. Rech,et al.  Co‐Evaporated Formamidinium Lead Iodide Based Perovskites with 1000 h Constant Stability for Fully Textured Monolithic Perovskite/Silicon Tandem Solar Cells , 2021, Advanced Energy Materials.

[63]  Liping Zhang,et al.  Cross-linked hole transport layers for high-efficiency perovskite tandem solar cells , 2021, Science China Chemistry.

[64]  Tongle Bu,et al.  Lead halide–templated crystallization of methylamine-free perovskite for efficient photovoltaic modules , 2021, Science.

[65]  Furkan H. Isikgor,et al.  Concurrent cationic and anionic perovskite defect passivation enables 27.4% perovskite/silicon tandems with suppression of halide segregation , 2021 .

[66]  Tai-De Li,et al.  CO2 doping of organic interlayers for perovskite solar cells , 2021, Nature.

[67]  Dewei Zhao,et al.  Low-bandgap Sn–Pb perovskite solar cells , 2021 .

[68]  Yang Yang,et al.  Prospects for metal halide perovskite-based tandem solar cells , 2021, Nature Photonics.

[69]  Xiaodang Zhang,et al.  Insights into the Development of Monolithic Perovskite/Silicon Tandem Solar Cells , 2021, Advanced Energy Materials.

[70]  B. Rech,et al.  27.9% Efficient Monolithic Perovskite/Silicon Tandem Solar Cells on Industry Compatible Bottom Cells , 2021, Solar RRL.

[71]  Jun Hee Lee,et al.  Pseudo-halide anion engineering for α-FAPbI3 perovskite solar cells , 2021, Nature.

[72]  Feng Yan,et al.  2D WSe2 Flakes for Synergistic Modulation of Grain Growth and Charge Transfer in Tin‐Based Perovskite Solar Cells , 2021, Advanced science.

[73]  Liming Ding,et al.  Inorganic perovskite/organic tandem solar cells with efficiency over 20% , 2021 .

[74]  Thomas G. Allen,et al.  Efficient bifacial monolithic perovskite/silicon tandem solar cells via bandgap engineering , 2021 .

[75]  Xingwang Zhang,et al.  Nickel oxide for inverted structure perovskite solar cells , 2021, Journal of Energy Chemistry.

[76]  Shangfeng Yang,et al.  Perovskite-based tandem solar cells. , 2020, Science bulletin.

[77]  Dong Hoe Kim,et al.  Wide-Bandgap Metal Halide Perovskites for Tandem Solar Cells , 2020, ACS Energy Letters.

[78]  B. Rech,et al.  Monolithic perovskite/silicon tandem solar cell with >29% efficiency by enhanced hole extraction , 2020, Science.

[79]  Lei Yan,et al.  Efficient monolithic perovskite/organic tandem solar cells and their efficiency potential , 2020 .

[80]  M. Nazeeruddin,et al.  Applications of Self‐Assembled Monolayers for Perovskite Solar Cells Interface Engineering to Address Efficiency and Stability , 2020, Advanced Energy Materials.

[81]  Jay B. Patel,et al.  Efficient energy transfer mitigates parasitic light absorption in molecular charge-extraction layers for perovskite solar cells , 2020, Nature Communications.

[82]  Jia Zhu,et al.  All-perovskite tandem solar cells with 24.2% certified efficiency and area over 1 cm2 using surface-anchoring zwitterionic antioxidant , 2020, Nature Energy.

[83]  Dong Suk Kim,et al.  Stable perovskite solar cells with efficiency exceeding 24.8% and 0.3-V voltage loss , 2020, Science.

[84]  M. Salvador,et al.  Interplay between temperature and bandgap energies on the outdoor performance of perovskite/silicon tandem solar cells , 2020, Nature Energy.

[85]  Imil Fadli Imran,et al.  High‐Efficiency Solution‐Processed Two‐Terminal Hybrid Tandem Solar Cells Using Spectrally Matched Inorganic and Organic Photoactive Materials , 2020, Advanced Energy Materials.

[86]  Furkan H. Isikgor,et al.  High-Performance Perovskite Single-Junction and Textured Perovskite/Silicon Tandem Solar Cells via Slot-Die-Coating , 2020 .

[87]  Zhengshan J. Yu,et al.  Simplified interconnection structure based on C60/SnO2-x for all-perovskite tandem solar cells , 2020, Nature Energy.

[88]  Zicheng Li,et al.  Perovskite‐Based Tandem Solar Cells: Get the Most Out of the Sun , 2020, Advanced Functional Materials.

[89]  W. Sha,et al.  Efficient and Reproducible Monolithic Perovskite/Organic Tandem Solar Cells with Low-Loss Interconnecting Layers , 2020 .

[90]  S. Glunz,et al.  25.1% High‐Efficiency Monolithic Perovskite Silicon Tandem Solar Cell with a High Bandgap Perovskite Absorber , 2020, Solar RRL.

[91]  K. Xiao,et al.  Recent progress in developing efficient monolithic all-perovskite tandem solar cells , 2020, Journal of Semiconductors.

[92]  Y. Hao,et al.  NiO/Perovskite Heterojunction Contact Engineering for Highly Efficient and Stable Perovskite Solar Cells , 2020, Advanced science.

[93]  Zhengshan J. Yu,et al.  Blade-Coated Perovskites on Textured Silicon for 26%-Efficient Monolithic Perovskite/Silicon Tandem Solar Cells , 2020, Joule.

[94]  Dong Hoe Kim,et al.  Efficient, stable silicon tandem cells enabled by anion-engineered wide-bandgap perovskites , 2020, Science.

[95]  A. Jen,et al.  Hybrid Perovskite‐Organic Flexible Tandem Solar Cell Enabling Highly Efficient Electrocatalysis Overall Water Splitting , 2020, Advanced Energy Materials.

[96]  Thomas G. Allen,et al.  Efficient tandem solar cells with solution-processed perovskite on textured crystalline silicon , 2020, Science.

[97]  Zhengshan J. Yu,et al.  Triple-halide wide–band gap perovskites with suppressed phase segregation for efficient tandems , 2020, Science.

[98]  Jia Zhu,et al.  Tin and Mixed Lead–Tin Halide Perovskite Solar Cells: Progress and their Application in Tandem Solar Cells , 2020, Advanced materials.

[99]  Sagar M. Jain,et al.  Development of Dopant‐Free Organic Hole Transporting Materials for Perovskite Solar Cells , 2020, Advanced Energy Materials.

[100]  Xun Xiao,et al.  Enhancing electron diffusion length in narrow-bandgap perovskites for efficient monolithic perovskite tandem solar cells , 2019, Nature Communications.

[101]  Shangfeng Yang,et al.  Interface engineering gifts CsPbI2.25Br0.75 solar cells high performance. , 2019, Science bulletin.

[102]  Jia Zhu,et al.  Monolithic all-perovskite tandem solar cells with 24.8% efficiency exploiting comproportionation to suppress Sn(ii) oxidation in precursor ink , 2019, Nature Energy.

[103]  Jia Zhu,et al.  Low-temperature processed inorganic hole transport layer for efficient and stable mixed Pb-Sn low-bandgap perovskite solar cells. , 2019, Science bulletin.

[104]  Bryon W. Larson,et al.  Enhanced Open-Circuit Voltage of Wide-Bandgap Perovskite Photovoltaics by Using Alloyed (FA1–xCsx)Pb(I1–xBrx)3 Quantum Dots , 2019, ACS Energy Letters.

[105]  Inho Kim,et al.  Optimization of device design for low cost and high efficiency planar monolithic perovskite/silicon tandem solar cells , 2019, Nano Energy.

[106]  Yongbo Yuan,et al.  A two-terminal all-inorganic perovskite/organic tandem solar cell. , 2019, Science bulletin.

[107]  Shangfeng Yang,et al.  CsPbI2.25Br0.75 solar cells with 15.9% efficiency. , 2019, Science bulletin.

[108]  J. Noh,et al.  Efficient, stable and scalable perovskite solar cells using poly(3-hexylthiophene) , 2019, Nature.

[109]  T. Miyasaka,et al.  Halide Perovskite Photovoltaics: Background, Status, and Future Prospects. , 2019, Chemical reviews.

[110]  B. Stannowski,et al.  Infrared Light Management Using a Nanocrystalline Silicon Oxide Interlayer in Monolithic Perovskite/Silicon Heterojunction Tandem Solar Cells with Efficiency above 25% , 2019, Advanced Energy Materials.

[111]  Yanfa Yan,et al.  Low‐Bandgap Mixed Tin‐Lead Perovskites and Their Applications in All‐Perovskite Tandem Solar Cells , 2019, Advanced Functional Materials.

[112]  Yaowen Li,et al.  Highly Efficient Flexible Polymer Solar Cells with Robust Mechanical Stability , 2019, Advanced science.

[113]  M. Zeman,et al.  Inverted pyramidally-textured PDMS antireflective foils for perovskite/silicon tandem solar cells with flat top cell , 2019, Nano Energy.

[114]  Zhengshan J. Yu,et al.  Grain Engineering for Perovskite/Silicon Monolithic Tandem Solar Cells with Efficiency of 25.4% , 2019, Joule.

[115]  N. Zheng,et al.  High-Efficiency, Hysteresis-Less, UV-Stable Perovskite Solar Cells with Cascade ZnO-ZnS Electron Transport Layer. , 2018, Journal of the American Chemical Society.

[116]  N. Lewis,et al.  In situ recombination junction between p-Si and TiO2 enables high-efficiency monolithic perovskite/Si tandem cells , 2018, Science Advances.

[117]  Kai Zhu,et al.  Efficient two-terminal all-perovskite tandem solar cells enabled by high-quality low-bandgap absorber layers , 2018, Nature Energy.

[118]  X. Hao,et al.  Monolithic perovskite/Si tandem solar cells exceeding 22% efficiency via optimizing top cell absorber , 2018, Nano Energy.

[119]  Yang Yang,et al.  High-performance perovskite/Cu(In,Ga)Se2 monolithic tandem solar cells , 2018, Science.

[120]  Zhongxin Zhou,et al.  Solvent Engineering to Balance Light Absorbance and Transmittance in Perovskite for Tandem Solar Cells , 2018, Solar RRL.

[121]  Zhengshan J. Yu,et al.  Minimizing Current and Voltage Losses to Reach 25% Efficient Monolithic Two-Terminal Perovskite–Silicon Tandem Solar Cells , 2018, ACS Energy Letters.

[122]  Dong Yang,et al.  High efficiency planar-type perovskite solar cells with negligible hysteresis using EDTA-complexed SnO2 , 2018, Nature Communications.

[123]  Tomas Leijtens,et al.  Opportunities and challenges for tandem solar cells using metal halide perovskite semiconductors , 2018, Nature Energy.

[124]  Yong Cao,et al.  Interface Engineering for All‐Inorganic CsPbI2Br Perovskite Solar Cells with Efficiency over 14% , 2018, Advanced materials.

[125]  Juan J. Diaz Leon,et al.  Fully textured monolithic perovskite/silicon tandem solar cells with 25.2% power conversion efficiency , 2018, Nature Materials.

[126]  N. Zheng,et al.  Efficient, Hysteresis‐Free, and Stable Perovskite Solar Cells with ZnO as Electron‐Transport Layer: Effect of Surface Passivation , 2018, Advanced materials.

[127]  Shihe Yang,et al.  Interface Engineering for Highly Efficient and Stable Planar p‐i‐n Perovskite Solar Cells , 2018 .

[128]  C. Ballif,et al.  Improved Optics in Monolithic Perovskite/Silicon Tandem Solar Cells with a Nanocrystalline Silicon Recombination Junction , 2018 .

[129]  Long Ji,et al.  Perovskite Solar Cells with ZnO Electron‐Transporting Materials , 2018, Advanced materials.

[130]  Xiaohui Qiu,et al.  Toward Full Solution Processed Perovskite/Si Monolithic Tandem Solar Device With PCE Exceeding 20% , 2017 .

[131]  A. Jen,et al.  Highly Efficient Perovskite–Perovskite Tandem Solar Cells Reaching 80% of the Theoretical Limit in Photovoltage , 2017, Advanced materials.

[132]  Jinsong Huang,et al.  Matching Charge Extraction Contact for Wide‐Bandgap Perovskite Solar Cells , 2017, Advanced materials.

[133]  C. Ballif,et al.  Efficient Monolithic Perovskite/Perovskite Tandem Solar Cells , 2017 .

[134]  Juntao Li,et al.  Efficient Indium‐Doped TiOx Electron Transport Layers for High‐Performance Perovskite Solar Cells and Perovskite‐Silicon Tandems , 2017 .

[135]  Jonathan P. Mailoa,et al.  23.6%-efficient monolithic perovskite/silicon tandem solar cells with improved stability , 2017, Nature Energy.

[136]  Liming Ding,et al.  Modified PEDOT Layer Makes a 1.52 V Voc for Perovskite/PCBM Solar Cells , 2017 .

[137]  D. Sacchetto,et al.  Zinc tin oxide as high-temperature stable recombination layer for mesoscopic perovskite/silicon monolithic tandem solar cells , 2016 .

[138]  Zhibin Yang,et al.  Stable Low‐Bandgap Pb–Sn Binary Perovskites for Tandem Solar Cells , 2016, Advanced materials.

[139]  Anders Hagfeldt,et al.  Polymer-templated nucleation and crystal growth of perovskite films for solar cells with efficiency greater than 21% , 2016, Nature Energy.

[140]  J. Heo,et al.  CH3NH3PbBr3–CH3NH3PbI3 Perovskite–Perovskite Tandem Solar Cells with Exceeding 2.2 V Open Circuit Voltage , 2016, Advanced materials.

[141]  C. Ballif,et al.  Parasitic Absorption Reduction in Metal Oxide-Based Transparent Electrodes: Application in Perovskite Solar Cells. , 2016, ACS applied materials & interfaces.

[142]  Jinsong Huang,et al.  Thin Insulating Tunneling Contacts for Efficient and Water‐Resistant Perovskite Solar Cells , 2016, Advanced materials.

[143]  Ye Chen,et al.  Thermal and environmental stability of semi-transparent perovskite solar cells for tandems by a solution-processed nanoparticle buffer layer and sputtered ITO electrode , 2016, 2016 IEEE 43rd Photovoltaic Specialists Conference (PVSC).

[144]  Jinsong Huang,et al.  Advances in Perovskite Solar Cells , 2016, Advanced science.

[145]  Jinsong Huang,et al.  Stabilized Wide Bandgap MAPbBrxI3–x Perovskite by Enhanced Grain Size and Improved Crystallinity , 2015, Advanced science.

[146]  Qi Chen,et al.  Improved air stability of perovskite solar cells via solution-processed metal oxide transport layers. , 2016, Nature nanotechnology.

[147]  Sang Il Seok,et al.  High-performance photovoltaic perovskite layers fabricated through intramolecular exchange , 2015, Science.

[148]  Hongwei Lei,et al.  Low-temperature solution-processed tin oxide as an alternative electron transporting layer for efficient perovskite solar cells. , 2015, Journal of the American Chemical Society.

[149]  Jonathan P. Mailoa,et al.  A 2-terminal perovskite/silicon multijunction solar cell enabled by a silicon tunnel junction , 2015 .

[150]  Yongfang Li,et al.  Triple cathode buffer layers composed of PCBM, C60, and LiF for high-performance planar perovskite solar cells. , 2015, ACS applied materials & interfaces.

[151]  Jinsong Huang,et al.  Low‐Temperature Fabrication of Efficient Wide‐Bandgap Organolead Trihalide Perovskite Solar Cells , 2015 .

[152]  Jinsong Huang,et al.  Solvent Annealing of Perovskite‐Induced Crystal Growth for Photovoltaic‐Device Efficiency Enhancement , 2014, Advanced materials.

[153]  Fan Zuo,et al.  Additive Enhanced Crystallization of Solution‐Processed Perovskite for Highly Efficient Planar‐Heterojunction Solar Cells , 2014, Advanced materials.

[154]  Timothy L. Kelly,et al.  Perovskite solar cells with a planar heterojunction structure prepared using room-temperature solution processing techniques , 2013, Nature Photonics.

[155]  Tzung-Fang Guo,et al.  CH3NH3PbI3 Perovskite/Fullerene Planar‐Heterojunction Hybrid Solar Cells , 2013, Advanced materials.

[156]  Tsutomu Miyasaka,et al.  Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. , 2009, Journal of the American Chemical Society.

[157]  Martin A. Green,et al.  Solar cell efficiency tables (Version 61) , 2022, Progress in Photovoltaics: Research and Applications.