Triazole: a unique building block for the construction of functional materials.

Over the past 50 years, numerous roads towards carbon-based materials have been explored, all of them being paved using mainly one functional group as the brick: acetylene. The acetylene group, or the carbon-carbon triple bond, is one of the oldest and simplest functional groups in chemistry, and although not present in any of the naturally occurring carbon allotropes, it is an essential tool to access their synthetic carbon-rich family. In general, two strategies towards the synthesis of π-conjugated carbon-rich structures can be employed: (a) either the acetylene group serves as a building block to access acetylene-derived structures or (b) it serves as a synthetic tool to provide other, usually benzenoid, structures. The recently discovered copper-catalysed azide-alkyne cycloaddition (CuAAC) reaction, however, represents a new powerful alternative: it transforms the acetylene group into a five-membered heteroaromatic 1H-1,2,3-triazole (triazole) ring and this gives rise to new opportunities. Compared with all-carbon aromatic non-functional rings, the triazole ring possesses three nitrogen atoms and, thus, can serve as a ligand to coordinate metals, or as a hydrogen bond acceptor and donor. This Feature Article summarises examples of using the triazole ring to construct conjugation- and/or function-related heteroaromatic materials, such as tuneable multichromophoric covalent ensembles, macrocyclic receptors or responsive foldamers. These recent examples, which open a new sub-field within organic materials, started to appear only few years ago and represent "a few more bricks" on the road to carbon-rich functional materials.

[1]  S. Hecht,et al.  Designing structural motifs for clickamers: exploiting the 1,2,3-triazole moiety to generate conformationally restricted molecular architectures. , 2011, Chemistry.

[2]  A. Rowan,et al.  Triazole–pyridine ligands: a novel approach to chromophoric iridium arrays , 2011 .

[3]  L. Ackermann,et al.  Regioselective syntheses of fully-substituted 1,2,3-triazoles: the CuAAC/C-H bond functionalization nexus. , 2010, Organic & biomolecular chemistry.

[4]  R. Friend,et al.  Multichromophoric phthalocyanine-(perylenediimide)(8) molecules: a photophysical study. , 2010, Chemistry.

[5]  M. Ostermeier,et al.  Complexes of click-derived bistriazolylpyridines: remarkable electronic influence of remote substituents on thermodynamic stability as well as electronic and magnetic properties. , 2010, Chemistry.

[6]  Y. Ju,et al.  Synthesis and binding ability of 1,2,3-triazole-based triterpenoid receptors for recognition of Hg(2+) ion. , 2010, Bioorganic & medicinal chemistry letters.

[7]  A. Kakkar,et al.  "Click" methodologies: efficient, simple and greener routes to design dendrimers. , 2010, Chemical Society reviews.

[8]  K. Müllen,et al.  Forever young: polycyclic aromatic hydrocarbons as model cases for structural and optical studies , 2010 .

[9]  Jason E Hein,et al.  Copper-catalyzed azide-alkyne cycloaddition (CuAAC) and beyond: new reactivity of copper(I) acetylides. , 2010, Chemical Society reviews.

[10]  A. Flood,et al.  Click chemistry generates privileged CH hydrogen-bonding triazoles: the latest addition to anion supramolecular chemistry. , 2010, Chemical Society reviews.

[11]  Krzysztof Matyjaszewski,et al.  Marrying click chemistry with polymerization: expanding the scope of polymeric materials. , 2010, Chemical Society reviews.

[12]  I. V. van Stokkum,et al.  Fast photo-processes in triazole-based push-pull systems. , 2010, Physical chemistry chemical physics : PCCP.

[13]  M. C. Feiters,et al.  Cationic Heteroleptic Cyclometalated IridiumIII Complexes Containing Phenyl-Triazole and Triazole-Pyridine Clicked Ligands , 2010, Molecules.

[14]  François Diederich,et al.  All‐Carbon Scaffolds by Rational Design , 2010, Advanced materials.

[15]  Pauline H. Bandeen,et al.  A multicomponent CuAAC "click" approach to a library of hybrid polydentate 2-pyridyl-1,2,3-triazole ligands: new building blocks for the generation of metallosupramolecular architectures. , 2010, Dalton transactions.

[16]  Pauline H. Bandeen,et al.  A one pot multi-component CuAAC “click” approach to bidentate and tridentate pyridyl-1,2,3-triazole ligands: Synthesis, X-ray structures and copper(II) and silver(I) complexes , 2010 .

[17]  J. Moses,et al.  Kupferkatalysierte Azid‐Alkin‐Cycloadditionen: regioselektive Synthese von 1,4,5‐trisubstituierten 1,2,3‐Triazolen , 2010 .

[18]  M. C. Feiters,et al.  Ir(III) and Ru(II) complexes containing triazole-pyridine ligands: luminescence enhancement upon substitution with beta-cyclodextrin. , 2009, Chemistry.

[19]  Daniel J. Burke,et al.  Applications of orthogonal "click" chemistries in the synthesis of functional soft materials. , 2009, Chemical reviews.

[20]  Anjul Kumar,et al.  Steroidal 1,2,3-triazole-based sensors for Hg2+ ion and their logic gate behaviour , 2009 .

[21]  É. Cloutet,et al.  New polyalkynyl dendrons and dendrimers: "click" chemistry with azidomethylferrocene and specific anion and cation electrochemical sensing properties of the 1,2,3-triazole-containing dendrimers. , 2009, Chemistry.

[22]  A. Rowan,et al.  A novel modular approach to triazole-functionalized phthalocyanines using click chemistry. , 2009, The Journal of organic chemistry.

[23]  Jae Wook Lee,et al.  Comparison of Three Different Click Reaction Methods for the Synthesis of Fluorene-Based Polymers and Performance in Quasi-Solid-State DSSCs , 2008 .

[24]  A. Flood,et al.  Strong, size-selective, and electronically tunable C-H...halide binding with steric control over aggregation from synthetically modular, shape-persistent [34]triazolophanes. , 2008, Journal of the American Chemical Society.

[25]  Morten Meldal,et al.  Cu-catalyzed azide-alkyne cycloaddition. , 2008, Chemical reviews.

[26]  F. Diederich,et al.  1,2,3-triazoles as conjugative pi-linkers in push-pull chromophores: importance of substituent positioning on intramolecular charge-transfer. , 2008, Organic letters.

[27]  Guochen Jia,et al.  Ruthenium-catalyzed azide-alkyne cycloaddition: scope and mechanism. , 2008, Journal of the American Chemical Society.

[28]  T. Funabiki,et al.  Syntheses, structural characterization and photophysical properties of 4-(2-pyridyl)-1,2,3-triazole rhenium(I) complexes. , 2008, Dalton transactions.

[29]  S. Hecht,et al.  Helixinversion in responsiven Foldameren durch achirale Gastmoleküle (Halogenidionen) , 2008 .

[30]  U. Bunz,et al.  1,3-Dipolar cycloaddition of alkynes to azides. Construction of operationally functional metal responsive fluorophores. , 2008, Chemical communications.

[31]  S. Hecht,et al.  Responsive Backbones Based on Alternating Triazole-Pyridine/Benzene Copolymers: From Helically Folding Polymers to Metallosupramolecularly Crosslinked Gels , 2008 .

[32]  Michael M. Haley,et al.  Synthesis and properties of annulenic subunits of graphyne and graphdiyne nanoarchitectures , 2008 .

[33]  M. Ostermeier,et al.  Multifunctional "clickates" as versatile extended heteroaromatic building blocks: efficient synthesis via click chemistry, conformational preferences, and metal coordination. , 2007, Chemistry.

[34]  Q. Guo,et al.  Facile Derivatization of Pyridyloxazole-type Fluorophore via Click Chemistry , 2007 .

[35]  John C Huffman,et al.  Can terdentate 2,6-bis(1,2,3-triazol-4-yl)pyridines form stable coordination compounds? , 2007, Chemical communications.

[36]  C. Nájera,et al.  The Sonogashira reaction: a booming methodology in synthetic organic chemistry. , 2007, Chemical reviews.

[37]  Wojciech Pisula,et al.  Graphenes as potential material for electronics. , 2007, Chemical reviews.

[38]  Henri Doucet,et al.  Palladium‐Katalysatorsysteme für die Synthese von konjugierten Eninen durch Sonogashira‐Kupplungen und verwandte Alkinylierungen , 2007 .

[39]  Jeffrey S. Moore,et al.  Alkyne Metathesis: Catalysts and Synthetic Applications , 2007 .

[40]  W. King,et al.  1,3-Dipolar Cycloaddition for the Generation of Nanostructured Semiconductors by Heated Probe Tips , 2006 .

[41]  J. Reek,et al.  Click-chemistry as an efficient synthetic tool for the preparation of novel conjugated polymers. , 2005, Chemical communications.

[42]  C. Katan,et al.  New chromophores from click chemistry for two-photon absorption and tuneable photoluminescence. , 2005, Chemical communications.

[43]  F. Diederich,et al.  Acetylene chemistry : chemistry, biology and material science , 2004 .

[44]  F. Himo,et al.  Copper(I)-catalyzed synthesis of azoles. DFT study predicts unprecedented reactivity and intermediates. , 2004, Journal of the American Chemical Society.

[45]  C. Fahrni,et al.  A Fluorogenic Probe for the Copper(I)-Catalyzed Azide−Alkyne Ligation Reaction: Modulation of the Fluorescence Emission via 3(n,π*)−1(π,π*) Inversion , 2004 .

[46]  H. Kolb,et al.  The growing impact of click chemistry on drug discovery. , 2003, Drug discovery today.

[47]  Morten Meldal,et al.  Peptidotriazoles on solid phase: [1,2,3]-triazoles by regiospecific copper(i)-catalyzed 1,3-dipolar cycloadditions of terminal alkynes to azides. , 2002, The Journal of organic chemistry.

[48]  K. Sharpless,et al.  Click-Chemie: diverse chemische Funktionalität mit einer Handvoll guter Reaktionen , 2001 .

[49]  O. Temkin,et al.  Polynuclear complexes of copper(I) halides: coordination chemistry and catalytic transformations of alkynes , 2001 .

[50]  François Diederich,et al.  Acetylenkupplungen: eine leistungsfähige Methode für den Aufbau von Molekülen , 2000 .

[51]  Chow,et al.  Perylene synthesis by the parallel cycloaromatization of adjacent enediynes , 2000, Organic letters.

[52]  J. Tour,et al.  SYNTHESIS OF POLYPHENYLENES AND POLYNAPHTHALENES BY THERMOLYSIS OF ENEDIYNES AND DIALKYNYLBENZENES , 1994 .

[53]  François Diederich,et al.  Carbon scaffolding: building acetylenic all-carbon and carbon-rich compounds , 1994, Nature.

[54]  S. C. O'brien,et al.  C60: Buckminsterfullerene , 1985, Nature.

[55]  Günter Szeimies,et al.  1.3-Dipolare Cycloadditionen, XXXII. Kinetik der Additionen organischer Azide an CC-Mehrfachbindungen , 1967 .

[56]  R. Huisgen 1.3‐Dipolare Cycloadditionen Rückschau und Ausblick , 1963 .

[57]  A. Michael Ueber die Einwirkung von Diazobenzolimid auf Acetylendicarbonsäuremethylester , 1893 .

[58]  J. Anthony,et al.  A reiterative approach to 2,3-disubstituted naphthalenes and anthracenes , 2000, Organic letters.

[59]  R. Gaylord unpublished results , 1985 .